Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Local electricity grid“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Local electricity grid" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Local electricity grid"
Bhandari, Khem Raj, und Narayan Prasad Adhikari. „Grid Integration of Solar and Solar/Wind Hybrid Mini-Grid Projects: A Case of Solar/Wind Hybrid Mini-Grid Project Implemented by AEPC“. Journal of the Institute of Engineering 15, Nr. 3 (13.10.2020): 42–48. http://dx.doi.org/10.3126/jie.v15i3.32004.
Der volle Inhalt der QuelleRösch, Tobias, Peter Treffinger und Barbara Koch. „Remuneration of Distribution Grids for Enhanced Regenerative Electricity Deployment—An Analysis and Model for the Analysis of Grid Structures in Southern Germany Using Linear Programming“. Energies 13, Nr. 20 (15.10.2020): 5385. http://dx.doi.org/10.3390/en13205385.
Der volle Inhalt der QuelleHerenčić, Lin, Perica Ilak und Ivan Rajšl. „Effects of Local Electricity Trading on Power Flows and Voltage Levels for Different Elasticities and Prices“. Energies 12, Nr. 24 (10.12.2019): 4708. http://dx.doi.org/10.3390/en12244708.
Der volle Inhalt der QuelleJoskow, Paul L. „Creating a Smarter U.S. Electricity Grid“. Journal of Economic Perspectives 26, Nr. 1 (01.02.2012): 29–48. http://dx.doi.org/10.1257/jep.26.1.29.
Der volle Inhalt der QuelleEgert, Rolf, Nina Gerber, Jasmin Haunschild, Philipp Kuehn und Verena Zimmermann. „Towards Resilient Critical Infrastructures – Motivating Users to Contribute to Smart Grid Resilience“. i-com 20, Nr. 2 (01.08.2021): 161–75. http://dx.doi.org/10.1515/icom-2021-0021.
Der volle Inhalt der QuelleJi, Peng, Lipeng Zhu, Chao Lu, Wei Lin und Jürgen Kurths. „How Price-Based Frequency Regulation Impacts Stability in Power Grids: A Complex Network Perspective“. Complexity 2020 (28.02.2020): 1–10. http://dx.doi.org/10.1155/2020/6297134.
Der volle Inhalt der QuelleMa, Li, und Die Xu. „Toward Renewable Energy in China: Revisiting Driving Factors of Chinese Wind Power Generation Development and Spatial Distribution“. Sustainability 13, Nr. 16 (14.08.2021): 9117. http://dx.doi.org/10.3390/su13169117.
Der volle Inhalt der QuelleLestari, Heksi, Maarten Arentsen, Hans Bressers, Budhi Gunawan, Johan Iskandar und Parikesit. „Sustainability of Renewable Off-Grid Technology for Rural Electrification: A Comparative Study Using the IAD Framework“. Sustainability 10, Nr. 12 (30.11.2018): 4512. http://dx.doi.org/10.3390/su10124512.
Der volle Inhalt der QuelleRöder, Johannes, David Beier, Benedikt Meyer, Joris Nettelstroth, Torben Stührmann und Edwin Zondervan. „Design of Renewable and System-Beneficial District Heating Systems Using a Dynamic Emission Factor for Grid-Sourced Electricity“. Energies 13, Nr. 3 (01.02.2020): 619. http://dx.doi.org/10.3390/en13030619.
Der volle Inhalt der QuelleKorsten, N., A. C. Brent, B. Sebitosi und K. Kritzinger. „The impact of residential rooftop solar PV on municipal finances: An analysis of Stellenbosch“. Journal of Energy in Southern Africa 28, Nr. 2 (23.06.2017): 29. http://dx.doi.org/10.17159/2413-3051/2017/v28i2a1740.
Der volle Inhalt der QuelleDissertationen zum Thema "Local electricity grid"
Nissen, Gustaf. „Cost Reduction Opportunities in Local Distribution Grids with Demand Response“. Thesis, Uppsala universitet, Elektricitetslära, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-132200.
Der volle Inhalt der QuelleNycander, Lovisa. „Evaluation tool for solving local power and capacity deficit“. Thesis, KTH, Energiteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-283647.
Der volle Inhalt der QuelleSverige har som mål att inte ha några nettoutsläpp av växthusgaser till atmosfären till 2045. För att uppnå detta mål är elektrifiering av olika sektorer sett som ett av de viktigaste spåren mot en fossilfri framtid. Elnätet i Sverige har historiskt set varit stabilt och med en näst intill obegränsad överföringskapacitet. Men med ett ökande effektbehov av el i samhället börjar den befintliga överföringskapaciteten bli begränsad och i vissa fall otillräcklig. På kort sikt kan detta försena utvecklingen av nya stads- och bostadsprojekt. På lång sikt kan kapacitetsbrist förhindra möjligheten av elektrifieringsprojekt med syfte att ersätta fossila bränslen inom transport- och industrisektorn. Detta kan påverka Sveriges konkurrenskraft och mål att inte ha några nettoutsläpp av växthusgaser negativt. Som en aktör med målet att tillhandahålla ledande lösningar för en hållbar framtid har AFRY ett intresse av att finna lösningar som möjliggör en omställning till fossilfri energi. Eftersom kapacitetsbrist i elnätet är ett växande problem i och runt storstadsregioner, har AFRY efterfrågat ett verktyg som kan utvärdera tekniska lösningar för att möta lokal effektbrist. Syftet med denna studie är där med att utveckla ett utvärderingsverktyg som jämföra tekniska lösningar för att möta lokal effektbrist. Genom en litteraturstudie har kunskap om olika tekniska lösningar sammanställts och förstärkning av lokala elnät, implementering av BESS eller kombinerade BESS PVsystem till det lokala elnätet inkluderats som lösningar i denna studie. Tillsammans med de tekniska parametrarna och investeringskostnader för teknikerna utvecklas ett analysverktyg i Excel. Från att ha testat olika fall i verktyget kan den kombinerade BESS PV-lösningen ses ha den lägsta investeringskostnaden om effektbristen är låg. Om effektbristen där emot är hög är utbyggnad av transformator och nätstations kapacitet i det lokala elnätet lösningen med lägst investeringskostnad.
Bjerre, Gustav, und Daniel Granath. „Flexibilitetsmarknaders roll för att överkomma kapacitetsbrist i lokala elnät : En studie om konceptets möjligheter och utmaningar på aktörsnivå och marknadsnivå“. Thesis, Linköpings universitet, Industriell miljöteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176252.
Der volle Inhalt der QuelleSeveral Swedish metropolitan regions have begun facing issues regarding the capacity in the power grid, a problem that is also known as capacity shortage. The problem of capacity shortage is based on several changes within the power system, for example, an increasing degree of renewable, intermittent electricity production, and society's increasing degree of electrification. In order to manage capacity shortages, power grid companies have traditionally expanded the power grid to be able to deliver power during all hours of the year, a method that has long lead times and high investment costs. The accelerated problem of capacity shortages puts pressure for change in the power system, and in particular the power grid companies to deal with the problem. An alternative in managing capacity shortages is for power grid companies to purchase flexibility services. It is a solution that is referred to as a more sustainable, resource efficient and socio-economic in relation to conventional power grid expansion. Flexibility in the power system can be seen as changes in the electricity production or the demand for power that intends to stabilize the power system. In a flexibility market, power grid companies can give companies incentives to offer their flexibility against payment and thus handle capacity shortages when needed. The purpose of the thesis has been to study the role of flexibility markets in overcoming capacity shortages in local power grids, and the concept’s opportunities and challenges for different actors and from a market perspective. Through qualitative research methods, semi-structured interviews, literature- and document studies, the authors have mapped the state of knowledge about flexibility markets and the concept's meaning for the power system. The thesis also presents a theoretical framework of economic theory that aims to provide a greater understanding of the market's establishment process and what possible market failures that are likely to occur. A pre-study has been carried out where two projects, CoordiNet and Sthlmflex, of flexibility markets in Sweden have been studied to identify insights into the concept’s opportunities and challenges. Furthermore, a semi-structured interview study was conducted with 15 different companies in Gothenburg, a region that does not yet have a flexibility market, to study companies’ drivers and obstacles to participate in a flexibility market. The companies were categorized into five different segments: industries, port industries, real estate companies, power grid companies and aggregators. The results from the pre-study show that the existing flexibility markets have been important for participating players to understand how they should integrate a flexibility market as a part of their businesses. It has been shown that there are several challenges in the flexibility projects, such as inadequate communication, lack of automated processes and low liquidity on the markets. In the interview study, it could be discerned that most industries, port industries and real estate companies have flexibility resources and potential to participate as flexibility providers in a flexibility market. In the same segments, obstacles were identified regarding the lack of technical equipment to be able to offer flexibility and an uncertainty about the level of remuneration that can be expected from the flexibility market for flexibility providers. Power grid companies sees flexibility markets as a good alternative for managing capacity shortages and that the potential is great for the future. Aggregators are believed to play a significant role in flexibility markets and be an enabler for companies with smaller flexibility resources and limited knowledge. In total, 12 of the 15 companies surveyed were interested in participating in a flexibility market in Gothenburg. Based on theory, a flexibility market can be seen as an innovative market and that the establishment process involves various market stabilizing actions. Flexibility markets also imply a need for innovative business models for market participants. Regarding the obstacles and challenges identified in the flexibility markets during the thesis, there are risks of market failure caused by asymmetric information, high transaction costs, bounded rationality, and externalities.
Kabir, MD Ahsan. „Techno-economic study of grid connected residential PV system with battery storage - A review of the Local System Operator (LSO) model“. Thesis, KTH, Elektroteknisk teori och konstruktion, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205594.
Der volle Inhalt der Quellesolcellsystem (PV) med batterilagring är en lovande alternativenergilösning förslutkonsumenten. Den 'local system operator', LSO, blir en ny aktör som driver egetenergisystem genom att integrera PV- och batterisystem med andra tekniska lösningar. Dennaavhandling undersöker det tekniska och ekonomiska genomförbarhetet i ett nätanslutet PVsystem med batterilagring i 'bakom mätaren' scenario för aggregerade bostäder i ettflerbostadshus, för att urvärdera LSO modellen.Systemmodellen är utvecklat med 'system advisory model' (rådgivande modell), SAM, ettsimuleringsprogram för förnybara energisystem. PV systemparametrarna beräknas med hänsyntill väderprofiler och lastdata från Sverige. Lämpliga parametrar för solcellsmoduler, omriktareoch systemförluster tas från tidigare studier. Slutkonsumenternas elpriser analyseras frånjämförande studie av NordPool grosshandelspris, konsumentpris och distributionnätstariffer.Finansiella mått såsom system kostnad, rabatt och inflationstakten och tillgängliga incitamentför PV investeringar används för att göra modellen noggrannare. Tre fall undersöks; det förstarepresenterar systemet med bara PV, och de övriga fallen lägger till lagring, genom antingenlitiumjon eller bly-syre batterier. Denna jämförande studie är ett underlag för att bestämma denoptimala PV och batteristorleken för anläggninar på två olika område i Sverige.Den optimala netto nuvarande värde (NPV) och lönsamhet index (PI) är på 40 kW PV systemetoch 3 kWh batteri på Karlstad, Sverige. Ytterligare undersökning av detta fall används för attutvärdera energiprofilen under systemets livstid, möjlighet till minskad elräkning, och batterietsprestanda. Potential för utjämning av systemets topplast utreds genom att skapa två andrascenarier med högre batterikapacitet. Känslighetsanalys utförs också för att bedöma de tekniskaoch ekonomiska parametrarna. Den optimuma storleken på PV system med ett litium-jonbatterifinns rimligt för LSO riktiga genomförande med tanke på incitamenten. Simuleringsresultatenoch systemkonsekvenserna av LSO modellen diskuteras. Rapporten visar att den tekniska ochekonomiska genomförbarheten av det studerade PV systemet med litium-jon batteri beror påslutkonsumentelpriset, PV incitament och globala trender i kostnaderna försystemkomponenter, samt på valet av lämplig plats med en effektiv analys av väder profil ochsystemetförluster.
Löfgren, Louise. „Elbilsladdnings påverkan på elnätet : Simuleringar av Gävles lokala elnät med olika laddningsmönster“. Thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-36846.
Der volle Inhalt der QuelleThe transport sector is facing a transition from combustion engine vehicles to electric vehicles. Through this action the carbon dioxide emissions in the transport sector can be reduced. The purpose of this study is to observe how an increased power use from electric vehicle charging (EVC) affects the local electricity grid in Gävle. The study also addresses how different charging techniques affect the electricity grid. The background of this study is to the increase awareness of the capacity of the electricity grid. There is a need from the electricity grid company to look over the impact on the grid from EVC. This could also be useful for others looking over the impact on the electricity grid from EVC. This is a hot topic and lots of other studies look over the different aspects of EVC. Previous studies also examine different types of charging techniques and how smart charging reduces the negative impact on the electricity grid. Smart charging is a way to adjust the EVC by regulating it after different parameters and connecting the entire electrical grid. This study simulates existing measured values of the low-voltage grid in Gävle and various types of EVC. This study examines the power use of existing measurement data as well as load current and voltage drops in the electricity grid with different load profiles in four different areas. Results from this study shot that EVC affects the electricity grid, to what extent depends on the type of charging technology used and the dimensions of the electricity grid. The study shows that electricity use in the area has power peaks in the afternoon and evening with residential customers, but power peaks tend to be in the middle of the day if there are industries in the area. EVC increase the load on the electricity grid, causes voltage drops and a few fuses in the grid to be triggered. Charging with 11 kW between 16:00-19:00 and charging with a power monitor of 13.8 kW create the greatest voltage drops and highest load on the grid. Charging without means of control affects the electricity grid the most but charging with a power monitor also creates problems. Charging with 5.5 kW between 23:00-06:00 as well as when only 50 % of all customers charge with 11 kW between 16:00-19:00 impacts the grid the least. Charging with low power during the night when the base load is at its lowest is the charging technology that is most favorable for the electricity grid. Results also show that the grid can handle a higher load of EVC in the near future if only some of the customers in the network start using electric vehicles.
Ferreira, Vasco Guedes. „The analysis of primary metered half-hourly electricity and gas consumption in municipal buildings“. Thesis, De Montfort University, 2009. http://hdl.handle.net/2086/3268.
Der volle Inhalt der QuelleBücher zum Thema "Local electricity grid"
Doheny-Farina, Stephen. Grid and the Village: Losing Electricity, Finding Community, Surviving Disaster. Yale University Press, 2008.
Den vollen Inhalt der Quelle findenDoheny-Farina, Stephen. Grid and the Village: Losing Electricity, Finding Community, Surviving Disaster. Yale University Press, 2010.
Den vollen Inhalt der Quelle findenThe Grid and the Village: Losing Electricity, Finding Community, Surviving Disaster. Yale University Press, 2001.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Local electricity grid"
Hosseini, Seyed Vahid, Ali Izadi, Seyed Hossein Madani, Yong Chen und Mahmoud Chizari. „Design Procedure of a Hybrid Renewable Power Generation System“. In Springer Proceedings in Energy, 155–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_20.
Der volle Inhalt der QuelleDeconinck, Geert. „Decentralised Control and Peer-To-Peer Cooperation in Smart Energy Systems“. In Shaping an Inclusive Energy Transition, 121–38. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74586-8_6.
Der volle Inhalt der QuelleUlsrud, Kirsten, Charles Muchunku, Debajit Palit und Gathu Kirubi. „The local context“. In Solar Energy, Mini-Grids and Sustainable Electricity Access, 41–46. New York : Routledge, 2019. | Series: Routledge focus on environment and sustainability: Routledge, 2018. http://dx.doi.org/10.4324/9780429433955-3.
Der volle Inhalt der QuelleJaglin, Sylvy. „Electricity Autonomy and Power Grids in Africa: from Rural Experiments to Urban Hybridizations“. In Local Energy Autonomy, 291–314. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119616290.ch13.
Der volle Inhalt der QuelleLezama, Fernando, Tiago Pinto, Zita Vale, Gabriel Santos und Steve Widergren. „From the smart grid to the local electricity market“. In Local Electricity Markets, 63–76. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-820074-2.00023-x.
Der volle Inhalt der QuelleKiesling, L. Lynne. „An economic analysis of market design: Local energy markets for energy and grid services“. In Local Electricity Markets, 279–93. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-820074-2.00001-0.
Der volle Inhalt der QuelleJenkins, Nick. „6. Future energy systems“. In Energy Systems: A Very Short Introduction, 116–30. Oxford University Press, 2019. http://dx.doi.org/10.1093/actrade/9780198813927.003.0006.
Der volle Inhalt der QuelleYang, Jing, Quan Zhang, Kunpeng Liu, Peng Jin und Guoyi Zhao. „Federated Learning in Big Data Application and Sharing“. In Fuzzy Systems and Data Mining VI. IOS Press, 2020. http://dx.doi.org/10.3233/faia200721.
Der volle Inhalt der QuelleMuza, Olivia. „The Electrification-Appliance Uptake Gap: Assessing the Off-Grid Appliance Market in Rwanda Using the Multi-Tier Framework“. In Sustainable Energy Investment - Technical, Market and Policy Innovations to Address Risk. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.93883.
Der volle Inhalt der QuelleVeeraganti, Suma Deepthi, und Ramchandra Nittala. „Operation of Microgrid and Control Strategies“. In Handbook of Research on Smart Power System Operation and Control, 434–49. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8030-0.ch019.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Local electricity grid"
Mustafa, Mustafa A., Sara Cleemput und Aysajan Abidin. „A local electricity trading market: Security analysis“. In 2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). IEEE, 2016. http://dx.doi.org/10.1109/isgteurope.2016.7856269.
Der volle Inhalt der QuelleKleiwegt, Eline, und Zofia Lukszo. „Grid impact analysis of electric mobility on a local electricity grid“. In 2012 9th IEEE International Conference on Networking, Sensing and Control (ICNSC). IEEE, 2012. http://dx.doi.org/10.1109/icnsc.2012.6204937.
Der volle Inhalt der Quellede la Nieta, Agustin Sanchez, und Madeleine Gibescu. „Impacts of a local electricity market operated by a local system operator: minimize costs or maximize profits?“ In 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). IEEE, 2019. http://dx.doi.org/10.1109/isgteurope.2019.8905602.
Der volle Inhalt der QuelleChakraborty, Shantanu, Remco Verzijlbergh und Zofia Lukszo. „Reduction of Price Volatility using Thermostatically Controlled Loads in Local Electricity Markets“. In 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). IEEE, 2020. http://dx.doi.org/10.1109/isgt-europe47291.2020.9248977.
Der volle Inhalt der QuelleLopez, G., M. Perez, L. Blanco, J. Moreno, P. Moura und A. de Almeida. „Monitoring system for the local distributed generation infrastructures of the smart grid“. In 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013). Institution of Engineering and Technology, 2013. http://dx.doi.org/10.1049/cp.2013.1166.
Der volle Inhalt der QuelleGrasenack, Martin, Lucas Jurgens, Anna Christin Meisner, Alexander Dreher, Pedro Giron, Kaspar Knorr und Mike Vogt. „Design and evaluation of a last-minute electricity market considering local grid limitations“. In 2020 17th International Conference on the European Energy Market (EEM). IEEE, 2020. http://dx.doi.org/10.1109/eem49802.2020.9221870.
Der volle Inhalt der QuelleAmpatzis, Michail, Phuong H. Nguyen und Wil Kling. „Local electricity market design for the coordination of distributed energy resources at district level“. In 2014 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). IEEE, 2014. http://dx.doi.org/10.1109/isgteurope.2014.7028888.
Der volle Inhalt der QuelleRhodes, Joshua D., Kazunori Nagasawa, Charles Upshaw und Michael E. Webber. „The Role of Small Distributed Natural Gas Fuel Cell Technologies in the Smart Energy Grid“. In ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/es2012-91195.
Der volle Inhalt der QuelleBjørndal, Endre, Mette Bjørndal, Magnus Buvik, Christian Nærup Børke und Eivind Gramme. „End-User Flexibility in the Local Electricity Grid – Blurring the Vertical Separation of Market and Monopoly?“ In Hawaii International Conference on System Sciences. Hawaii International Conference on System Sciences, 2019. http://dx.doi.org/10.24251/hicss.2019.431.
Der volle Inhalt der QuelleTumiran, Sarjiya, Lesnanto M. Putranto, Wahri Sunanda, Roni Irnawan, Adi Priyanto und Ira Savitri. „The Masterplan for Developing Electricity Systems for Archipelagic Area by Considering Local Energy Resources: A Case Study of Maluku Islands“. In 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE). IEEE, 2019. http://dx.doi.org/10.1109/sege.2019.8859915.
Der volle Inhalt der Quelle