Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lobe diagrams“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lobe diagrams" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lobe diagrams"
Harrison, A. J. L., und T. R. A. Pearce. „Prediction of lobe growth and decay in centreless grinding based on geometric considerations“. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 216, Nr. 9 (01.09.2002): 1201–16. http://dx.doi.org/10.1243/095440502760291763.
Der volle Inhalt der QuelleAbele, E., und U. Fiedler. „Creating Stability Lobe Diagrams during Milling“. CIRP Annals 53, Nr. 1 (2004): 309–12. http://dx.doi.org/10.1016/s0007-8506(07)60704-5.
Der volle Inhalt der QuelleDhupia, Jaspreet S., Bartosz Powalka, A. Galip Ulsoy und Reuven Katz. „Effect of a Nonlinear Joint on the Dynamic Performance of a Machine Tool“. Journal of Manufacturing Science and Engineering 129, Nr. 5 (17.04.2007): 943–50. http://dx.doi.org/10.1115/1.2752830.
Der volle Inhalt der QuelleHayati, Sajad, Mohammad Hajaliakbari, Yalda Rajabi und Sajad Rasaee. „Chatter reduction in slender boring bar via a tunable holder with variable mass and stiffness“. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 232, Nr. 12 (01.03.2017): 2098–108. http://dx.doi.org/10.1177/0954405417690554.
Der volle Inhalt der QuelleFriedrich, Jens, Jonas Torzewski und Alexander Verl. „Online Learning of Stability Lobe Diagrams in Milling“. Procedia CIRP 67 (2018): 278–83. http://dx.doi.org/10.1016/j.procir.2017.12.213.
Der volle Inhalt der QuelleWiseman, Richard, und Adrian M. Owen. „Turning the Other Lobe: Directional Biases in Brain Diagrams“. i-Perception 8, Nr. 3 (18.05.2017): 204166951770776. http://dx.doi.org/10.1177/2041669517707769.
Der volle Inhalt der QuelleZhao, D., und Q. Zhang. „Regenerative Chatter Stability and Hopf Bifurcation Analysis in Milling System“. Advanced Materials Research 739 (August 2013): 400–407. http://dx.doi.org/10.4028/www.scientific.net/amr.739.400.
Der volle Inhalt der QuelleFriedrich, Jens, Christoph Hinze, Anton Renner, Alexander Verl und Armin Lechler. „Estimation of stability lobe diagrams in milling with continuous learning algorithms“. Robotics and Computer-Integrated Manufacturing 43 (Februar 2017): 124–34. http://dx.doi.org/10.1016/j.rcim.2015.10.003.
Der volle Inhalt der QuelleLöser, Michael, und Knut Großmann. „Influence of Parameter Uncertainties on the Computation of Stability Lobe Diagrams“. Procedia CIRP 46 (2016): 460–63. http://dx.doi.org/10.1016/j.procir.2016.04.031.
Der volle Inhalt der QuelleTyler, Christopher T., John Troutman und Tony L. Schmitz. „Radial depth of cut stability lobe diagrams with process damping effects“. Precision Engineering 40 (April 2015): 318–24. http://dx.doi.org/10.1016/j.precisioneng.2014.11.004.
Der volle Inhalt der QuelleDissertationen zum Thema "Lobe diagrams"
Sedlář, Jiří. „Konstrukce dvouosého suportu vícevřetenového soustružnického automatu“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443158.
Der volle Inhalt der QuelleMontalban, Laura. „Evaluation of a Contactless Excitation and Response System (CERS) for process planning applications : An experimental study“. Thesis, KTH, Industriell produktion, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192679.
Der volle Inhalt der QuelleChatter är ett vanligt problem inom tillverkningsindustrin som begränsar produktiviteten och minskar noggrannheten och kvalitén på bearbetade ytor. Denna studie fokuserar på processkilda metoder, till exempel stabilitetsdiagram (SLD), vilka säkerställer valet av optimala skärparametrar för en stabil skärprocess. Tidigare studier har visat att spindelns dynamiska egenskaper är beroende av rotationshastigheten. Detta påverkar även noggrannheten vid skattningen av SLD eftersom traditionella strukturdynamiska tester, som experimentell modalanalys (EMA), utförs under statiskt tillstånd. En alternativ metod för bestämning av hastighetsberoende SLD med hjälp av ett beröringsfritt excitering- och svarssystem (CERS) föreslås. De modala egenskaperna, som till exempel egenfrekvens och dämpning, bestämdes med hjälp av EMA med stillastående spindel medan mätningar med CERS utfördes med ökad rotationshastighet upp till 14000 varv/min. Efter detta beräknades SLD för de båda fallen. Till sist drogs slutsatsen att testerna inte påvisade någon större skillnad, vare sig dynamiska egenskaper eller SLD skattning, för spindelhastigheter inom det testade intervallet (0 till 14000 varv/min).
Quintana, i. Badosa Guillem. „Stability lobes diagram identification and surface roughness monitoring in milling processes“. Doctoral thesis, Universitat de Girona, 2010. http://hdl.handle.net/10803/7769.
Der volle Inhalt der QuelleProductivity and quality improvement are undoubtedly two of the main demands of the
modern manufacturing sector and key factors for competitiveness and survival. Within this sector, material removal processes play, still nowadays, a principal role despite the emergence of additive manufacturing techniques. Industries such as aerospace, automotive, molds and dies or energy largely depend on machine tools performance for improved productivity and quality. This Thesis is focused on two important aspects when it comes to improving productivity and quality of the manufacturing sector: chatter problem, and surface roughness monitoring in high speed milling.
Fiala, Zdeněk. „Vibrace při obrábění kovů“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229045.
Der volle Inhalt der QuelleJuriga, Jakub. „Virtuální model části obráběcího stroje v ADAMS“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230395.
Der volle Inhalt der QuelleKhandelwal, Avinash 1987. „The wiring diagram of antennal lobe and mapping a brain circuit that controls chemotaxis behavior in the Drosophila larva“. Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/663806.
Der volle Inhalt der QuelleLas larvas de Drosophila ofrecen una oportunidad única para el mapeo anatómico y funcional de su sistema nervioso debido a propiedades como la simplicidad numérica de neuronas que componen su sistema nervioso y su habilidad de exhibir comportamientos cuantificables como la quimiotaxis. En este estudio hemos mapeado el lóbulo antenal de la larva de Drosophila con uno de sus circuitos responsable de controlar la transformación sensorial-motora en el asta lateral (LH) (cerebro superior) a través de una sola neurona descendiente usando la reconstrucción 3D para microscopia electrónica. Hemos presentado, en el lóbulo antenal, un circuito canónico con proyecciones neuronales uniglomerulares (uPNs) responsables de transmitir aumentos controlados de actividad desde sus ORN* hasta centros superiores del cerebro como el cuerpo fungiforme y el asta lateral del protocerebro. Hemos descubierto también un circuito paralelo formado por neuronas con proyecciones multiglomerulares (mPNs) y neuronas locales (Lns), organizadas jerárquicamente, que integran selectivamente señales desde múltiples ORNs a nivel de primera sinapsis con conectividad LN-LN implementando aparentemente un mecanismo de aumento de control que potencialmente puede intercambiar señales olfativas distintas computacionalmente a través de inhibición panglomerular permitiendo al sistema responder a olores vagamente aversivos en un ambiente rico en fuertes olores apetitosos. También hemos reconstruido y estudiado uno de los circuitos olfativos que conectan con el LH conocido por influenciar la quimiotaxis de la larva a través de un sola neurona cerebral descendiente, la PVM027. Hemos descubierto que dicha neurona es la responsable de controlar la respuesta stop en el comportamiento de quimiotaxis. La reconstrucción por EM revela su conexión con una variedad de sistemas motores así como neuronas descendientes SEZ en el VNC. Observamos dichas conexiones gracias al circuito de propagación de onda peristáltica de la larva, y descubrimos que la PVM027 implementa la señal de stop terminando e interrumpiendo el origen de la onda peristáltica.
Malý, Pavel. „Výpočtové modelování samobuzeného kmitání při obrábění“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-320178.
Der volle Inhalt der QuelleSismilich, Vladimír. „Vibrace při obrábění kovů – příčiny a jejich eliminace“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229329.
Der volle Inhalt der QuelleCvijetin, Mlađenović. „Dinamičko ponašanje obradnih sistema za mikroobradu“. Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2020. https://www.cris.uns.ac.rs/record.jsf?recordId=114858&source=NDLTD&language=en.
Der volle Inhalt der QuelleThe subject of research presented in the doctoral dissertation are self-excited vibrations in milling. Based on a detailed analysis of the self-excited vibrations occurrence, a certain parallel has been established between macro and micromilling, for cases when the depth of cut is greater than the cutting edge radius of the tool. For such adopted assumptions, models of advanced numerical simulation of macro and micromilling processes were developed. The developed models were comprehensively verified, on the one hand, by comparison with the results of other authors, and on the other hand by comparison with own experimental results. An innovative tangent method has been proposed for the experimental definition of the cutting depth limit in milling, and the method of machined surface roughness has been proposed for micromilling, having in mind the available measuring equipment. Mathematical models and experimental methods were verified by machining three characteristic types of materials on two machining systems in macromilling, and one material on one machining system in micromilling. The results of the research are presented through twelve chapters, the content of which is listed below.In the first, introductory chapter, the importance of the research of self - excited vibrations in macro and micromilling is pointed out. The topicality of the research is also presented by analyzing the number of scientific papers dealing with the issue of self - excited vibrations in the period of the last twenty - five years.The second chapter presents in detail the previous research on self-excited vibrations during macromilling, while the third chapter presents research on self-excited vibrations during micromilling. An analysis of the influential parameters on the cutting depth limit was performed, which is a basic indicator of the dynamic stability of both macro and micromachining systems.Based on the findings presented in the second and third chapters, the fourth chapter defines the goals and hypotheses of the research.Mathematical methods for defining the stability lobe diagram of the machining system are presented in the fifth chapter. Two mathematical models for defining the stability lobe diagram for macromachining are presented, the model of the tool’s mean contact angle and the model of Fourier series. Numerical simulation of the milling process is presented, intended primarily for the simulation of cutting forces. Starting from the previously presented idea, a new mathematical method for predicting the cutting depth limit has been developed within this chapter - an improved numerical simulation of the milling process.In the sixth chapter, experimental methods of machine tools vibration identification are presented, ie experimental determination of machining systems modal parameters as well as methods of self - excited vibrations detection during milling. In order to define the cutting depth limit, the method of vibrations frequency analysis during milling is presented, as a method that is often used in modern experimental research. However, both mathematical and experimental methods of milling vibration analysis have certain limitations. Starting from the previous one, an innovative tangent method was developed, based on the previously developed method, used within the Laboratory for Machine Tools, Institute of Production Engineering Facultz of Technical Sciences in Novi Sad, and the application of modern measuring systems. In addition, in this chapter, the influence of self - excited vibrations on the machined surface quality and the geometric accuracy of the workpiece is experimentally confirmed.The methodology of machine tool elements mathematically and experimentally defined frequency response functions coupling is presented in the seventh chapter. The displacement responses coupling equations of mathematically defined tools and tool holders FRF's (based on Euler 's beam theory) with the experimentally defined FRF of the machine tool main spindle assembly are presented.Within the eighth chapter, a mathematical model of cutting forces in micromilling was developed. The proposed cutting forces model, which takes into account the friction force between the reliefe tool surface and the machined surface, is implemented in an advanced numerical micromilling simulation, which enables its application to define cutting depth limit in micromilling.Verification of the developed numerical and experimental methods for vibrations analysis during macromachining is presented in the ninth chapter. A series of experimental tests were performed, during which the cutting depth limits were determined during the milling of three different workpiece materials (Al7075, 42CrMo4 and Ti-6Al-4V) on two machining systems.In the tenth chapter, the verification of the methods of analysis of self-excited vibrations during micromilling is presented. Using the methodology of coupling displacement responses, the modal parameters of the machining system for micromachining are defined, needed to define the cutting depth limits, ie. stability lobe diagram, by advanced numerical micromilling simulation The stability lobe diagram, defined by the developed advanced numerical simulation, was verified experimentally and by comparison with literature sources.The eleventh chapter provides concluding remarks, a critical review of the achieved results, and directions for future research.The twelfth chapter presents an overview of the used literature, which consists of 218 references, mostly cited in the paper itself.
Martin, Denis. „Le dipole imprime alimente par couplage electromagnetique a une ligne microruban : synthese et realisation de reseaux a lobes de rayonnement formes“. Rennes, INSA, 1988. http://www.theses.fr/1988ISAR0004.
Der volle Inhalt der QuelleBücher zum Thema "Lobe diagrams"
Zenn diagram. Toronto, Ontario: Kids Can Press, 2017.
Den vollen Inhalt der Quelle findenCody, Westphal, Hrsg. I love charts: The book. Naperville, IL: Sourcebooks, 2012.
Den vollen Inhalt der Quelle findenNégrier, Patrick. Temple de Salomon et diagrammes symboliques: Iconographie des tableaux de loge et de cabinet de réflexion. Groslay: Editions Ivoire-Clair, 2004.
Den vollen Inhalt der Quelle findenZenn Diagram. Kids Can Press, Limited, 2018.
Den vollen Inhalt der Quelle findenOsgood, Libby, Gayla Cameron und Emma Christensen. Engineering Mechanics: Statics. University of Prince Edward Island, 2021. http://dx.doi.org/10.32393/engnmech.
Der volle Inhalt der QuelleMays, J. C. C. Contemplation in Coleridge’s Poetry. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198799511.003.0002.
Der volle Inhalt der QuelleNakai, You. Reminded by the Instruments. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190686765.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Lobe diagrams"
Großmann, K., und M. Löser. „Synthesis of Stability Lobe Diagrams“. In Lecture Notes in Production Engineering, 225–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32448-2_10.
Der volle Inhalt der QuelleKauffmann, Pierre, und Jean-Claude Spehner. „The construction of Delaunay diagrams by lob reduction“. In Discrete and Computational Geometry, 205–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-47738-1_19.
Der volle Inhalt der QuelleZhang, Mingkai, Xiaowei Tang, Rong Yan, Fangyu Peng, Chen Chen, Yuting Li und Haohao Zeng. „A Boundary Auto-Location Algorithm for the Prediction of Milling Stability Lobe Diagram“. In Intelligent Robotics and Applications, 299–308. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97586-3_27.
Der volle Inhalt der QuelleEynian, Mahdi, Sunday Ogheneochuko Usino und Ana Esther Bonilla Hernández. „Studies on Surface Roughness in Stable and Unstable End-Milling“. In Advances in Transdisciplinary Engineering. IOS Press, 2020. http://dx.doi.org/10.3233/atde200184.
Der volle Inhalt der QuelleBaker, Peter S. „More Diagrams by Byrhtferth of Ramsey“. In Latin Learning and English Lore (Volumes I & II), herausgegeben von Katherine O'Brien O'Keeffe und Andy Orchard. Toronto: University of Toronto Press, 2005. http://dx.doi.org/10.3138/9781442676589-035.
Der volle Inhalt der Quelle„Reducing Hospital Costs by Reducing Supply Waste“. In Lean Six Sigma for Optimal System Performance in Manufacturing and Service Organizations, 82–105. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-4062-5.ch004.
Der volle Inhalt der QuelleOgawa, Yukiko. „Fact, Narrative, Visualization as Fiction, and Love“. In Computational and Cognitive Approaches to Narratology, 333–53. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0432-0.ch013.
Der volle Inhalt der Quelle„Corolla open out, one lobe and its stamen folded forward to show scales, g. Floral diagram, h. Branch with fruit. Drawn by Priscilla Fawcett. From Correll and Correll 1982.“ In Florida Ethnobotany, 759–64. CRC Press, 2004. http://dx.doi.org/10.1201/9780203491881-125.
Der volle Inhalt der Quelle„(1) Stage 1: correct analysis of the constituent parts of the problem question (a) Identify the FACTS given—place on a tree diagram. (b) Identify the primary and secondary LEGAL ISSUES raised by the facts, available defences and doubts in the law. Place on a tree diagram of the issues. List the issues under the facts. (c) Consider the LAW THAT MAY APPLY. The first task is to read the question and determine the topic. The problem chosen is contract. In an examination the speed with which a problem question is narrowed to a topic and then to issues within that topic can be of exceptional importance since time is of the essence. (Part of the technique is having engaged in consistent study techniques so you are up to date in your course study and your revision if an examination is involved.) You should have a clear idea of the areas of doubt where currently the law is unclear, as often this is the area in which problem questions will be located. The first stage of analysis involves a combination of linguistic ability and legal knowledge. The problem question can be underlined and issues drawn out in a very simple first reading. This combination is demonstrated in Figure 8.2, below. The words that are the clues to the legal issues are boxed and arrows leading from these words begin to discuss the legal issues raised. There are two things to note in a problem question like this one that comes with two labelled parts (a) and (b). You must answer both parts unless instructed clearly that candidates are to answer either (a) or (b). Many students can fall here and assume there is a choice. Do not exercise a choice unless this is clearly given otherwise you could lose half of the marks going for the problem question. As can be seen a lot has been done to interrogate the question and divide it into its parts. It is important to break the question down into its constituent issues, so that the context of (a) and (b) can be appreciated. (2) Stage 2: begin to work on discrete aspects of the problem question What should also be apparent is that you need to have a view as to whether a contract has been concluded between Cedric and Dorothy, and if so when, before (a) or (b) can be answered. The issues to be considered can also be set out as a narrative. These are: (1) What is the effect of Cedric writing to Dorothy to offer to sell the coin? (2) What is the effect of Dorothy’s letter? (3) What is the effect of Cedric’s two suggested responses: (a) that he ignored Dorothy’s letter; (b) that he put a sticker on it saying sold but Dorothy did not collect it? It should by now be apparent it was not the first time that the issue revolved around whether there has in fact been a contract concluded. The answer to this is dependent upon whether an offer and an acceptance can be located, and if so where they stand.“ In Legal Method and Reasoning, 275. Routledge-Cavendish, 2012. http://dx.doi.org/10.4324/9781843145103-214.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lobe diagrams"
Friedrich, Jens, Henning Hartmann, Alexander Verl und Armin Lechler. „Continuous learning support vector machine to estimate stability lobe diagrams in milling“. In International FAIM Conference. DEStech Publications, Inc., 2014. http://dx.doi.org/10.14809/faim.2014.0641.
Der volle Inhalt der QuelleLi, Weitao, Liping Wang und Guang Yu. „Time Domain Study on the Construction Mechanism of Milling Stability Lobe Diagrams With Multiple Modes“. In ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-60227.
Der volle Inhalt der QuelleBurns, Timothy J., und Tony L. Schmitz. „Receptance Coupling Study of Tool-Length Dependent Dynamic Absorber Effect“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60081.
Der volle Inhalt der QuelleMolnár, Tamás G., Tamás Insperger, S. John Hogan und Gábor Stépán. „Investigating Multiscale Phenomena in Machining: The Effect of Cutting-Force Distribution Along the Tool’s Rake Face on Process Stability“. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47165.
Der volle Inhalt der QuelleLehotzky, David, und Zoltan Dombovari. „Modeling and Stability of Milling Processes With Active Damping“. In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97551.
Der volle Inhalt der QuelleLanders, Robert G., und A. Galip Ulsoy. „Nonlinear Feed Effect in Machining Chatter Analysis“. In ASME 2007 International Manufacturing Science and Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/msec2007-31045.
Der volle Inhalt der QuelleNoel, David, Mathieu Ritou, Sebastien Le Loch und Benoit Furet. „Bearings Influence on the Dynamic Behavior of HSM Spindle“. In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82563.
Der volle Inhalt der QuelleCatania, Giuseppe, und Nicolo` Mancinelli. „Experimental Chatter Modeling of Milling Operations“. In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41931.
Der volle Inhalt der QuelleXu, Chao, Pingfa Feng, Dingwen Yu, Zhijun Wu und Jianfu Zhang. „Stability Prediction of Milling Process With Closed Machining System Dynamics With Flexible Thin-Walled Workpiece“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51454.
Der volle Inhalt der QuelleCurry, Brandon, Henry M. Loope, Thomas V. Lowell, Hong Wang, Jason Thomason und Olivier J. Caron. „RECENT CHANGES TO THE TIME-DISTANCE DIAGRAM OF THE LAKE MICHIGAN LOBE (MICHIGAN SUBEPISODE, WISCONSIN EPISODE)“. In 50th Annual GSA North-Central Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016nc-275575.
Der volle Inhalt der Quelle