Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Liver cell models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Liver cell models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Liver cell models"
Zeilinger, Katrin, Nora Freyer, Georg Damm, Daniel Seehofer und Fanny Knöspel. „Cell sources forin vitrohuman liver cell culture models“. Experimental Biology and Medicine 241, Nr. 15 (24.07.2016): 1684–98. http://dx.doi.org/10.1177/1535370216657448.
Der volle Inhalt der QuelleArez, Francisca, Ana F. Rodrigues, Catarina Brito und Paula M. Alves. „Bioengineered Liver Cell Models of Hepatotropic Infections“. Viruses 13, Nr. 5 (27.04.2021): 773. http://dx.doi.org/10.3390/v13050773.
Der volle Inhalt der QuelleGuillouzo, Andre. „Liver Cell Models in in Vitro Toxicology“. Environmental Health Perspectives 106 (April 1998): 511. http://dx.doi.org/10.2307/3433803.
Der volle Inhalt der QuelleGuillouzo, A. „Liver cell models in in vitro toxicology.“ Environmental Health Perspectives 106, suppl 2 (April 1998): 511–32. http://dx.doi.org/10.1289/ehp.98106511.
Der volle Inhalt der QuelleSari, Gulce, Gertine W. van Oord, Martijn D. B. van de Garde, Jolanda J. C. Voermans, Andre Boonstra und Thomas Vanwolleghem. „Sexual Dimorphism in Hepatocyte Xenograft Models“. Cell Transplantation 30 (01.01.2021): 096368972110061. http://dx.doi.org/10.1177/09636897211006132.
Der volle Inhalt der QuelleAmato, G., T. Saleh, G. Carpino, E. Gaudio, D. Alvaro und V. Cardinale. „Cell Therapy and Bioengineering in Experimental Liver Regenerative Medicine: In Vivo Injury Models and Grafting Strategies“. Current Transplantation Reports 8, Nr. 2 (22.05.2021): 76–89. http://dx.doi.org/10.1007/s40472-021-00325-2.
Der volle Inhalt der QuelleBenesic, Andreas, und Alexander L. Gerbes. „Drug-Induced Liver Injury and Individual Cell Models“. Digestive Diseases 33, Nr. 4 (2015): 486–91. http://dx.doi.org/10.1159/000374094.
Der volle Inhalt der QuellePeters, Marion G. „Animal models of autoimmune liver disease“. Immunology and Cell Biology 80, Nr. 1 (Februar 2002): 113–16. http://dx.doi.org/10.1046/j.0818-9641.2001.01059.x.
Der volle Inhalt der QuelleAlison, Malcolm R. „Adult stem cell-derived liver stem cells as models for hepatotoxicity“. Toxicology 226, Nr. 1 (September 2006): 32. http://dx.doi.org/10.1016/j.tox.2006.05.049.
Der volle Inhalt der QuelleSo, Juhoon, Angie Kim, Seung-Hoon Lee und Donghun Shin. „Liver progenitor cell-driven liver regeneration“. Experimental & Molecular Medicine 52, Nr. 8 (August 2020): 1230–38. http://dx.doi.org/10.1038/s12276-020-0483-0.
Der volle Inhalt der QuelleDissertationen zum Thema "Liver cell models"
Tirnitz-Parker, Janina Elke Eleonore. „Primary culture and immortal cell lines as in vitro models to evaluate the role of TWEAK signalling in hepatic oval cells /“. Connect to this title, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0039.
Der volle Inhalt der QuelleKrinner, Axel. „Spherical Individual Cell-Based Models“. Doctoral thesis, Universitätsbibliothek Leipzig, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-38817.
Der volle Inhalt der QuelleShen, Zan, und 沈贊. „The kringle 1 domain of hepatocyte growth factor exerts both anti-angiogenic and anti-tumor cell effects on hepatocellular carcinoma“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40687661.
Der volle Inhalt der QuelleWilson, Gerald M. „Regulation of LDL receptor mRNA stability and subcellular localization in human liver cell culture models“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq22502.pdf.
Der volle Inhalt der QuelleChang, Robert Chao Sun Wei. „Biofabrication of three-dimensional liver cell-embedded tissue constructs for in vitro drug metabolism models /“. Philadelphia, Pa. : Drexel University, 2009. http://hdl.handle.net/1860/3069.
Der volle Inhalt der QuelleYe, Dewei, und 叶得伟. „Toll-like receptor-4 mediates obesity-induced nonalcoholic steatohepatitis through activation of X-box binding protein-1 in mice“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B47752919.
Der volle Inhalt der Quellepublished_or_final_version
Medicine
Doctoral
Doctor of Philosophy
Riordan, Jesse Daniel. „A forward genetics approach to identify molecular drivers of liver cancer using Sleeping Beauty mouse models“. Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/5049.
Der volle Inhalt der QuelleBoulais, Lilandra. „Cryogel-integrated hepatic cell culture microchips for liver tissue engineering“. Thesis, Compiègne, 2020. http://www.theses.fr/2020COMP2561.
Der volle Inhalt der QuelleToday, one of the challenges for the pharmaceutical industry is to develop accurate in vitro liver models to improve the predictability of preclinical studies, in particular the study of the toxicity and efficacy of drug candidates. In recent years, tissue engineering, a multidisciplinary approach to develop tissues, has led to the development of new cell culture methods. Among them, cell cultures in 3D or in perfusion allowed to obtain hepatic activities similar to those observed in vivo. The objective of this thesis is to combine these two cell culture methods to create an even more accurate in vitro liver model. To do so, we are seeking to develop an alginate cryogel integrated into a microchip with mechanical properties adaptable to those of the liver depending on the physiological state to be reproduced (healthy or pathological liver).In the first part, we develop and characterize the alginate cryogel at the microscopic and macroscopic level, outside (cylindrical samples) and then inside the biochip. Three parameters are studied here: the cryopolymerization temperature, the alginate concentration and the quantity of cross-linking agents. Mechanical properties, porosity, absorption, pore interconnectivity and flow resistance are analyzed. The second part aims to culture liver cells within this new device. For this feasibility study the HepG2/C3A cell line is used. The results show viable and functional cells (albumin production, APAP transformation). In addition, we observe a 3D tissue structure, which is maintained after removal of the alginate cryogel. The last part aims to complexify the hepatic model, in particular by co-cultures. To get closer to the sinusoid structure, liver cells are cultured with endothelial cells (HUVEC) according to two approaches. In addition, the possibility to follow circulating tumor cells (MDA-MB-231) in the system is studied
Dixon, Laura J. „The role of caspase-1 in liver and adipose tissue during metabolic dysregulation in mouse models on NASH“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1355861009.
Der volle Inhalt der QuelleFarooq, Muhammad. „Role of RIPK1 in the survival and death of hepatocytes : its involvement in murine hepatitis models“. Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1B006.
Der volle Inhalt der QuelleCell death plays central role in the development and progression of liver diseases. Irrespective of the etiological agents, it results in hepatocyte destruction, leading to inflammation and compensatory proliferation. In addition, the persistent cell demise can lead into fibrosis and ultimately hepatocellular carcinoma, the 3rd leading cause of cancer related death. Expression or release of death ligands, such as TNF-α, FAS L and TRAIL, by inflammatory cells remains the key players in the progression of liver diseases. Downstream of death ligand receptors or PAMPs, receptor interacting protein kinase 1 (RIPK1) influences the fate of cell, whether to survive or to die by caspase-dependent apoptosis or by RIPK3/MLKL-dependent necroptosis and could therefore be potential targets in regulating cell death. RIPK1 can have distinct pro-death or pro-survival role, regulated by its kinase or scaffolding functions, respectively. In line with this, we have already shown the protective role of RIPK1 in animal models of acute hepatitis induced by ConA, LPS. In my PhD work, the objective was to assess the role of RIPK1 in animal models of acute (fulminant viral hepatitis, CCl4 and acetaminophen [APAP] induced liver damage) and chronic hepatitis (High Fat High Cholesterol diet [HFHCD]-induced NASH). Our results demonstrated that RIPK1 protects hepatocytes from TNF-α secreted from macrophages during viral induced fulminant hepatitis. These data emphasize the potential worsening risks of an HBV infection in people with polymorphism or homozygous amorphic mutations already described for the RIPK1 gene. Besides, we established that RIPK1 in liver parenchymal cells does not influence APAP-induced liver injury in mice. Additional inhibition of RIPK1 kinase activity in Ripk1LPC-KO mice did not improve hepatic damage, revealing that RIPK1 kinase activity in liver non-parenchymal cells does not contribute to APAP-induced liver injury. Otherwise, we demonstrated that RIPK1 of liver parenchymal cells partly preserves the liver from CCl4-induced damage, lesions that do not depend on TNF-α . Finally, we showed that RIPK1 in liver parenchymal cells has a tendency to protect from HFHCD-induced fibrosis in murine NASH and that dietary intervention can improve liver fibrosis in mice with NASH. As for the role of RIPK1-kinase activity in NASH, it remains to be explored to evaluate its therapeutic interest
Bücher zum Thema "Liver cell models"
Dmitriev, Ruslan I., Hrsg. Multi-Parametric Live Cell Microscopy of 3D Tissue Models. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67358-5.
Der volle Inhalt der QuelleOzolinš, Terence Robert Stanislavs. Interspecies co-culture of embryos and maternal hepatocytes: An in vitro model of phenytoin embryotoxicity. Toronto, Ont: Faculty of Pharmacy, University of Toronto, 1990.
Den vollen Inhalt der Quelle findenDmitriev, Ruslan I. Multi-Parametric Live Cell Microscopy of 3D Tissue Models. Springer, 2018.
Den vollen Inhalt der Quelle findenDmitriev, Ruslan I. Multi-Parametric Live Cell Microscopy of 3D Tissue Models. Springer, 2017.
Den vollen Inhalt der Quelle findenMüller, Anna. Boredom and Emptiness, or the Flow of Life in Confinement. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190499860.003.0006.
Der volle Inhalt der QuelleKortgen, Andreas, und Michael Bauer. Hepatic function in the critically ill. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0175.
Der volle Inhalt der QuelleAnderson, Greg. The Cells of the Social Body. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190886646.003.0013.
Der volle Inhalt der QuelleBorges, Karin. Triheptanoin in Epilepsy and Beyond. Herausgegeben von Dominic P. D’Agostino. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190497996.003.0034.
Der volle Inhalt der QuelleEhrlich, Benjamin. The Dreams of Santiago Ramón y Cajal. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190619619.001.0001.
Der volle Inhalt der QuelleOhkawa, Reiko. Psycho-oncology: the sexuality of women and cancer. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198749547.003.0011.
Der volle Inhalt der QuelleBuchteile zum Thema "Liver cell models"
Wiggins, Benjamin G., Konstantinos Aliazis, Scott P. Davies, Gideon Hirschfield, Patricia F. Lalor, Gary Reynolds und Zania Stamataki. „In Vitro and Ex Vivo Models to Study T Cell Migration Through the Human Liver Parenchyma“. In Methods in Molecular Biology, 195–214. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6931-9_14.
Der volle Inhalt der QuelleIdo, Akio, Satoru Hasuike, Hirofumi Uto, Akihiro Moriuchi und Hirohito Tsubouchi. „Hepatocyte Growth Factor Accelerates Proliferation of Hepatic Oval Cells in a 2-Acetylaminofluorene/Partial Hepatectomy Model in the Rat“. In Stem Cell and Liver Regeneration, 36–40. Tokyo: Springer Japan, 2004. http://dx.doi.org/10.1007/978-4-431-53971-1_4.
Der volle Inhalt der QuelleShirmanova, Marina V., Lubov’ E. Shimolina, Maria M. Lukina, Elena V. Zagaynova und Marina K. Kuimova. „Live Cell Imaging of Viscosity in 3D Tumour Cell Models“. In Advances in Experimental Medicine and Biology, 143–53. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67358-5_10.
Der volle Inhalt der QuelleFerreira, Jorge, Sara Correia und Miguel Rocha. „Reconstruction of Metabolic Models for Liver Cancer Cells“. In Advances in Intelligent Systems and Computing, 213–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40126-3_22.
Der volle Inhalt der QuelleOmasa, Takeshi, und Shin Enosawa. „Construction of Liver Model with Genetically Engineered Human HepG2 Cells“. In Animal Cell Technology: Basic & Applied Aspects, 25–29. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0726-8_5.
Der volle Inhalt der QuelleKo, Sungjin, und Donghun Shin. „Chemical Screening Using a Zebrafish Model for Liver Progenitor Cell-Driven Liver Regeneration“. In Methods in Molecular Biology, 83–90. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8961-4_8.
Der volle Inhalt der QuelleSanders, Jennifer A., und Douglas C. Hixson. „Rodent Models for Assessing the Role of Stem Cells in Liver Development, Regeneration, and Carcinogenesis“. In Stem Cells Handbook, 459–76. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7696-2_34.
Der volle Inhalt der QuelleSkilleter, D. N., und B. M. J. Foxwell. „Enzymic Deglycosylation of Ricin Lowers its Uptake by Rat Liver Non-Parenchymal Cells“. In Mechanisms and Models in Toxicology, 257–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72558-6_46.
Der volle Inhalt der QuelleLechner, John F., Duane T. Smoot, Andrea M. A. Pfeifer, Katharine H. Cole, Ainsley Weston, John D. Groopman, Peter G. Shields, Takayoshi Tokiwa und Curtis C. Harris. „A Non-Tumorigenic Human Liver Epithelial Cell Culture Model for Chemical and Biological Carcinogenesis Investigations“. In Neoplastic Transformation in Human Cell Culture, 307–21. Totowa, NJ: Humana Press, 1991. http://dx.doi.org/10.1007/978-1-4612-0411-4_31.
Der volle Inhalt der QuelleDjavani, Mahmoud. „A Primary Human Liver Cell Culture Model for Hemorrhagic Fever Viruses“. In Methods in Molecular Biology, 291–302. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6981-4_23.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Liver cell models"
Kang, Young Bok (Abraham), Joseph Cirillo, Siddhartha Rawat, Michael Bouchard und Hongseok (Moses) Noh. „Layered Hepatocytes and Endothelial Cells on a Transwell Membrane: Toward Engineering the Liver Sinusoid“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89413.
Der volle Inhalt der QuelleEndo, Yoko, Mingjun Zhang, Sachie Yamaji und YONG CANG. „Abstract LB-42: Inducible mouse models for studying liver stem cell activation and tumor development“. In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-lb-42.
Der volle Inhalt der QuelleSteinway, Steven N., Hien Dang, Wei Ding, Carl B. Rountree und Reka Albert. „Abstract PR8: Network modeling of epithelial-to-mesenchymal transition in liver cancer metastasis“. In Proceedings: AACR Special Conference on Chemical Systems Biology: Assembling and Interrogating Computational Models of the Cancer Cell by Chemical Perturbations--Jun 27-30, 2012; Boston, MA. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.csb12-pr8.
Der volle Inhalt der QuelleTourlomousis, Filippos, und Robert C. Chang. „Computational Modeling of 3D Printed Tissue-on-a-Chip Microfluidic Devices as Drug Screening Platforms“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38454.
Der volle Inhalt der QuelleDebbaut, Charlotte, David De Wilde, Christophe Casteleyn, Pieter Cornillie, Manuel Dierick, Luc Van Hoorebeke, Diethard Monbaliu, Ye-Dong Fan und Patrick Segers. „Electrical Analog Models to Simulate the Impact of Partial Hepatectomy on Hepatic Hemodynamics“. In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14266.
Der volle Inhalt der QuelleTourlomousis, Filippos, und Robert C. Chang. „2D and 3D Multiscale Computational Modeling of Dynamic Microorgan Devices as Drug Screening Platforms“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52734.
Der volle Inhalt der QuelleFontanili, Luca, Massimo Milani, Luca Montorsi, Letizia Scurani und Francesco Fabbri. „An Engineering Approach to Model Blood Cells Electrical Characteristics: From Biological to Digital-Twin“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23583.
Der volle Inhalt der QuelleTakehana, Tatsumi, Takeru Sano und Masanori Kawahara. „Influences of Fabrication Defects Upon the Strength and Lives of Filament Wound Composite Cylinders“. In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-2268.
Der volle Inhalt der QuelleFalkenberg, Cibele Vieira, und John G. Georgiadis. „Water and Solute Active Transport Through Model Epidermis: Contribution of Electrodiffusion“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62166.
Der volle Inhalt der QuelleHiguita-Castro, Natalia, Yan Huang, Cosmin Mihai, Derek J. Hansford und Samir N. Ghadiali. „Influence of Wall Compliance on Epithelial Cell Structure and Injury During Airway Reopening“. In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19568.
Der volle Inhalt der Quelle