Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lits fluidisé“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lits fluidisé" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lits fluidisé"
Miháltz, P., Zs Csikor, P. Chatellier und B. Siklódi. „Optimisation de la concentration de biomasse dans un réacteur à lit fluidisé“. Revue des sciences de l'eau 14, Nr. 2 (12.04.2005): 131–45. http://dx.doi.org/10.7202/705413ar.
Der volle Inhalt der QuelleDufour, I., A. Maali, Y. Amarouchene, C. Ayela, B. Caillard, A. Darwiche, M. Guirardel et al. „The Microcantilever: A Versatile Tool for Measuring the Rheological Properties of Complex Fluids“. Journal of Sensors 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/719898.
Der volle Inhalt der QuelleRuvalcaba, J. Ramiro Rodriguez, Brigitte Caussat, Merhdji Hemati und Jean-Pierre Couderc. „Étude hydrodynamique des lits fluidisés sous vide et sous haute température“. Canadian Journal of Chemical Engineering 77, Nr. 1 (Februar 1999): 35–44. http://dx.doi.org/10.1002/cjce.5450770107.
Der volle Inhalt der QuelleChehbouni, A., J. Chaouki, C. Guy und D. Klvana. „Description et modélisation des structures globale et locale des lits fluidisés en régime turbulent“. Chemical Engineering Journal and the Biochemical Engineering Journal 61, Nr. 2 (Februar 1996): 73–82. http://dx.doi.org/10.1016/0923-0467(95)03029-8.
Der volle Inhalt der QuelleKing, Danielle, Hakan Başağaoğlu, Hoa Nguyen, Frank Healy, Melissa Whitman und Sauro Succi. „Effects of Advective-Diffusive Transport of Multiple Chemoattractants on Motility of Engineered Chemosensory Particles in Fluidic Environments“. Entropy 21, Nr. 5 (04.05.2019): 465. http://dx.doi.org/10.3390/e21050465.
Der volle Inhalt der QuelleSabiri, Nour-Eddine, und Jacques Comiti. „Ecoulement de fluides newtoniens et non newtoniens à travers des lits fixes stratifiés“. Canadian Journal of Chemical Engineering 75, Nr. 6 (Dezember 1997): 1030–37. http://dx.doi.org/10.1002/cjce.5450750605.
Der volle Inhalt der QuelleDuravac. „Vacuum publications Duravac Vacuum Fluids 1986 Price List“. Vacuum 36, Nr. 10 (Oktober 1986): 748. http://dx.doi.org/10.1016/0042-207x(86)90543-9.
Der volle Inhalt der QuelleMajor, Laura. „“There Were Some Things That Did Not Change”: Postcolonial Reckonings with Gender in The No. 1 Ladies’ Detective Agency Series“. College Literature 51, Nr. 1 (Januar 2024): 84–105. http://dx.doi.org/10.1353/lit.2024.a917865.
Der volle Inhalt der QuelleWang, Jie, Ming Jun Xu, Lin Li Shi, Qi Shi, Yong Chao Wang und Yi Xiang Duan. „A Computer-Controlled In Situ Analysis Instrument Based on Laser Induced Breakdown Spectroscopy“. Applied Mechanics and Materials 556-562 (Mai 2014): 561–66. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.561.
Der volle Inhalt der QuelleEsen, Oğul, Miroslav Grmela, Hasan Gümral und Michal Pavelka. „Lifts of Symmetric Tensors: Fluids, Plasma, and Grad Hierarchy“. Entropy 21, Nr. 9 (18.09.2019): 907. http://dx.doi.org/10.3390/e21090907.
Der volle Inhalt der QuelleDissertationen zum Thema "Lits fluidisé"
Nacef, Saci. „Hydrodynamique des lits fluidisés gaz-liquide-solide“. Vandoeuvre-les-Nancy, INPL, 1991. http://www.theses.fr/1991INPL056N.
Der volle Inhalt der QuelleSabiri, Nour-Eddine. „Etude de l'écoulement des fluides newtoniens et non newtoniens à travers les milieux poreux : lits fixes et lits fluidisés“. Nantes, 1995. http://www.theses.fr/1995NANT2052.
Der volle Inhalt der QuelleAguillon, Martinez Javier. „Étude du comportement hydrodynamique des lits fluidisés circulants avec injection d'air secondaire“. Compiègne, 1995. http://www.theses.fr/1995COMPD826.
Der volle Inhalt der QuelleMotte, Jérôme. „Étude du comportement hydrodynamique de mélanges multi-solides dans un lit fluidisé circulant“. Compiègne, 1996. http://www.theses.fr/1996COMPD947.
Der volle Inhalt der QuelleSaberi, Babak. „Développement des techniques de mesure dans les écoulements polyphasiques et les lits fluidisés“. Compiègne, 1996. http://www.theses.fr/1996COMPD944.
Der volle Inhalt der QuelleSaberi, Shadi. „Modélisation des systèmes à écoulement gaz-solide : application aux cas des réacteurs à lit fluidisé circulant“. Compiègne, 1996. http://www.theses.fr/1996COMPD945.
Der volle Inhalt der QuelleHelland, Eivind. „Etude des écoulements fluide-solide dans les lits fluidisés : simulation numérique et analyse des hétérogénéités“. Aix-Marseille 1, 2000. http://www.theses.fr/2000AIX11053.
Der volle Inhalt der QuelleThe goal of this work is to contribute to a better understanding of gas-particle flows. We have developed a code based on the Eulerian-Lagrangian approach in a two-dimensional configuration. This method allows us to follow the trajectory of each particle in the riser in order to study the discrete behavior of the solid phase. We have investigated the gas-solid flow both in diluted and dense fluidized beds. In the first case, we studied the clustering behavior of the particles caused by hydrodynamics and modified by collision characteristics. In the second, we investigated a dense bed in order to get a better understanding of the bubble formation, which is linked to porosity perturbations within the bed
Quan, Haiqin. „Etude théorique et expérimentale des micro-lits fluidisés : hydrodynamique et modélisation numérique“. Thesis, Ecole centrale de Lille, 2017. http://www.theses.fr/2017ECLI0027/document.
Der volle Inhalt der QuelleMicro-fluidized bed (MFB) exhibits great advantages such as a large specific contact surface, a fast dissipation of heat (ideal for exothermic reactions) and better mass and heat transfers, but suffers from difficulties in precise control and shows strong frictional wall effect. Present study was conducted experimentally and numerically to understand fundamental hydrodynamics in MFBs. Experimental work was carried out in four MFBs of 20-4 mm compared to two relatively large beds of 100-50 mm using three types of particles (B347: 347 μm, 2475 kg/m3; B105: 105 μm, 8102 kg/m3; A63: 63.8μm, 2437 kg/m3). The ratio of static bed height (Hs) to bed diameter (Dt) was set between 1-4. Mechanical vibration was applied to the 4 mm bed. A new method for flow regimes diagnosis was developed based on pressure fluctuation analyses, which mainly include calculating the standard deviation, autocorrelation function, probability density function, power spectral density function and time-frequency analysis. Numerical simulations were performed under Eulerian-Eulerian framework in 2D. Six flow regimes were identified: fixed bed, bubbling, bubbling/slugging, slugging, slugging/turbulent and bubbling/turbulent. Partial fluidization is encountered at Hs/Dt=1-2 while slugging prevails quickly after minimum fluidization at Hs/Dt=3-4. In the 4 mm bed, fluidization of B347 particles show better fluidization quality, while an increase in Umf is observed for B105 and A63 particles. Mechanical vibration reduces partial fluidization, thus resulting in larger ΔP and smaller Umf. A larger Umb and a delayed Uc were obtained as well. Results by simulations agree reasonably well with experimental data
Özel, Ali. „Simulation aux grandes échelles des lits fluidisés circulants gaz-particule“. Thesis, Toulouse, INPT, 2011. http://www.theses.fr/2011INPT0090/document.
Der volle Inhalt der QuelleEulerian two fluid approach is generally used to simulate gas-solid flows in industrial circulating fluidized beds. Because of limitation of computational resources, simulations of large vessels are usually performed by using too coarse grid. Coarse grid simulations can not resolve fine flow scales which can play an important role in the dynamic behaviour of the beds. In particular, cancelling out the particle segregation effect of small scales leads to an inadequate modelling of the mean interfacial momentum transfer between phases and particulate shear stresses by secondary effect. Then, an appropriate modelling ac counting for influences of unresolved structures has to be proposed for coarse-grid simu-lations. For this purpose, computational grids are refined to get mesh-independent result where statistical quantities do not change with further mesh refinement for a 3-D peri-odic circulating fluidized bed. The 3-D periodic circulating fluidized is a simple academic configuration where gas-solid flow conducted with A-type particles is periodically driven along the opposite direction of the gravity. The particulate momentum and agitation equations are filtered by the volume averaging and the importance of additional terms due to the averaging procedure are investigated by budget analyses using the mesh independent result. Results show that the filtered momentum equation of phases can be computed on coarse grid simulations but sub-grid drift velocity due to the sub-grid correlation between the local fluid veloc- ity and the local particle volume fraction and particulate sub-grid shear stresses must be taken into account. In this study, we propose functional and structural models for sub- grid drift velocity, written in terms of the difference between the gas velocity-solid volume fraction correlation and the multiplication of the filtered gas velocity with the filtered solid volume fraction. Particulate sub-grid shear stresses are closed by models proposed for single turbulent flows. Models’ predictabilities are investigated by a priori tests and they are validated by coarse-grid simulations of 3-D periodic circulating, dense fluidized beds and experimental data of industrial scale circulating fluidized bed in manner of a posteriori tests
Sellami, Jawhar. „Conception, mise en œuvre, développement et modélisation de réacteurs de précipitation utilisant des lits fluidisés“. Thesis, Vandoeuvre-les-Nancy, INPL, 2008. http://www.theses.fr/2008INPL088N/document.
Der volle Inhalt der QuelleThe objective of this work is to conceive, develop, implement and to optimize a continuous technology allowing a good control of the precipitation reactions, fast chemical process, giving birth to a solid phase. This precipitor is a multipurpose engine with fluidized bed which did not make the same great strides like fluidized bed crystallizers. Two experimental approaches were adopted : (1) the study of the mixing phenomena of the reagents and (2) the study of the influence of the operating conditions on the precipitation of a model product. The model product selected for this study is the calcite, the polymorphic most stable phase of calcium carbonate which has three polymorphs: vaterite, aragonite and calcite. The latter is obtained by the precipitation reaction between the calcium chloride and sodium carbonate solutions at a temperature of 20° C and a complexing agent (sodium citrate) to have the required crystalline form. A kinetic study was undertaken for the determination of the nucleation and crystalline growth kinetics of calcite in citrate medium. The fluidized bed reactor, having a volume of 10 L, consisted of two zones: cylindrical for fluidization and classification of the particles and cylindro-conical for decantation, was conceived at the Chemical Engineering Science Laboratory (LSGC). The study of mixing phenomena, performed using the decoloration acid-base reaction and the hydrodynamic study, carried out using suspensions of glass microballs, made it possible to develop and optimize this multipurpose reactor. The feasibility of the precipitation of calcite in a fluidized bed was then checked. The experiments carried out in the presence of an important solid content made it possible to decrease supersaturation and to support the crystalline growth. The precipitate obtained presents a relatively narrow size distribution and the particle shape is appreciably spherical. Lastly, the modelling tests of the fluidized bed reactor were undertaken to carry out simulations using the FLUENT commercial computer code
Bücher zum Thema "Lits fluidisé"
J, Anthony E., Hrsg. Fluidized bed combustion. New York: M. Dekker, 2004.
Den vollen Inhalt der Quelle findenDeruelle, Nathalie, und Jean-Philippe Uzan. Fields and matter. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0026.
Der volle Inhalt der QuelleCombustion and gasification in fluidized beds. Boca Raton, FL: Taylor & Francis, 2005.
Den vollen Inhalt der Quelle findenNew Edition Diverticular Diet Cookbook, Meal Plan and Food List: The Detailed Guide to Living with Diverticular Disease. Containing Food to Eat and Avoid with Recipes Ranging from Clear Fluids to Foods with Low Residue and High Fiber Content. Independently Published, 2022.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Lits fluidisé"
Butcher, Tim A. „Magnetic Action at a Distance: Fields, Gradients and Currents in Fluids“. In Topics in Applied Physics, 11–21. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-58376-6_2.
Der volle Inhalt der QuelleCasey, James, und Marcel J. Crochet. „List of Publications of Paul M. Naghdi“. In Theoretical, Experimental, and Numerical Contributions to the Mechanics of Fluids and Solids, 33–47. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9229-2_3.
Der volle Inhalt der QuelleAbidi, Sophia. „3 Between communities and identities“. In Living at Night in Times of Pandemic, 47–62. Bielefeld, Germany: transcript Verlag, 2024. http://dx.doi.org/10.14361/9783839467268-004.
Der volle Inhalt der Quelle„List of Figures“. In Fluidity, herausgegeben von Marcel Finke und Kassandra Nakas, 295–300. Dietrich Reimer Verlag, 2022. http://dx.doi.org/10.5771/9783496030614-295.
Der volle Inhalt der Quelle„Duality, Fluidity, and Equilibrium“. In Taken from the Lips: Gender and Eros in Mesoamerican Religions, 13—Ins4. BRILL, 2006. http://dx.doi.org/10.1163/9789047408680_006.
Der volle Inhalt der QuelleSchulkin, Jay. „The Concept of Sport“. In Sport. Columbia University Press, 2016. http://dx.doi.org/10.7312/columbia/9780231176767.003.0001.
Der volle Inhalt der Quelle„List of Figures and Illustrations“. In Global Fluids, viii. Berghahn Books, 2018. http://dx.doi.org/10.2307/j.ctvw04bzv.3.
Der volle Inhalt der Quelle„List of Symbols“. In Life in Moving Fluids, 403–6. Princeton University Press, 2020. http://dx.doi.org/10.2307/j.ctvzsmfc6.23.
Der volle Inhalt der Quelle„List of algorithms“. In Molecular Simulation of Fluids, 567–69. Elsevier, 2024. http://dx.doi.org/10.1016/b978-0-323-85398-9.00005-8.
Der volle Inhalt der QuelleWitten, T., und P. Pincus. „Polymer molecules“. In Structured Fluids, 41–82. Oxford University PressOxford, 2004. http://dx.doi.org/10.1093/oso/9780198526889.003.0003.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lits fluidisé"
Nogues, M., M. Valles, M. Bourouis, D. Boer und A. Coronas. „Absorption-Compression Heat Pump for Space Heating and Cooling Using Organic Fluids“. In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1290.
Der volle Inhalt der QuelleShiari, Behrouz, Mahdi M. Sadeghi, Ali Darvishian und Khalil Najafi. „A Discrete Model for an Electrostatically Driven Micro-Hydraulic Actuator“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39019.
Der volle Inhalt der QuelleLiu, Jing, und Yang Yang. „Cryogenic and Fluidic Ways Lead to Low Cost Micro/Nano Devices“. In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82143.
Der volle Inhalt der QuelleMahat, Meg, Tae Y. Choi, Nasrasadani Seifolah und Arup Neogi. „Dual Pump Femtosecond Laser Induced Plasma“. In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56096.
Der volle Inhalt der QuelleWang, Jiaqi, Hirofumi Miki, Kean C. Aw und Rajnish N. Sharma. „A New Diffuser/Nozzle Structure With Extended Sidewalls for Maximising the Valveless Micropump Performance“. In ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icnmm2014-21325.
Der volle Inhalt der QuelleYedidiah, S. „An Updated Study of Recirculation at the Inlet of a Rotodynamic Impeller“. In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77048.
Der volle Inhalt der QuelleAbabneh, Amer Khalil, und Charles Garris. „Direct Interaction of Fluid-to-Fluid in an Unsteady Ejector With a Zero-Degree Conning Radial Diffuser“. In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78544.
Der volle Inhalt der QuelleMilanovic, Ivana, und Sunil Kumar. „Just-In-Time and Iterative Learning in Thermo-Fluids“. In ASME 2024 Fluids Engineering Division Summer Meeting collocated with the ASME 2024 Heat Transfer Summer Conference and the ASME 2024 18th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/fedsm2024-122894.
Der volle Inhalt der QuelleBöhle, M. „Numerical Investigation of the Flow in Hydrostatic Journal Bearings With Porous Material“. In ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83437.
Der volle Inhalt der QuelleYoung, Monica J., Mark N. Glauser, Hiroshi Higuchi und Jeffrey Taylor. „Towards Sensing and Control of Separation in Subsonic Flows“. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45586.
Der volle Inhalt der Quelle