Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lithium/sodium metal batteries“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lithium/sodium metal batteries" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lithium/sodium metal batteries"
Chawla, Neha, und Meer Safa. „Sodium Batteries: A Review on Sodium-Sulfur and Sodium-Air Batteries“. Electronics 8, Nr. 10 (22.10.2019): 1201. http://dx.doi.org/10.3390/electronics8101201.
Der volle Inhalt der QuelleXie, Xing-Chen, Ke-Jing Huang und Xu Wu. „Metal–organic framework derived hollow materials for electrochemical energy storage“. Journal of Materials Chemistry A 6, Nr. 16 (2018): 6754–71. http://dx.doi.org/10.1039/c8ta00612a.
Der volle Inhalt der QuelleMa, Lianbo, Jiang Cui, Shanshan Yao, Xianming Liu, Yongsong Luo, Xiaoping Shen und Jang-Kyo Kim. „Dendrite-free lithium metal and sodium metal batteries“. Energy Storage Materials 27 (Mai 2020): 522–54. http://dx.doi.org/10.1016/j.ensm.2019.12.014.
Der volle Inhalt der QuelleWang, Yanjie, Yingjie Zhang, Hongyu Cheng, Zhicong Ni, Ying Wang, Guanghui Xia, Xue Li und Xiaoyuan Zeng. „Research Progress toward Room Temperature Sodium Sulfur Batteries: A Review“. Molecules 26, Nr. 6 (11.03.2021): 1535. http://dx.doi.org/10.3390/molecules26061535.
Der volle Inhalt der QuelleBiemolt, Jasper, Peter Jungbacker, Tess van Teijlingen, Ning Yan und Gadi Rothenberg. „Beyond Lithium-Based Batteries“. Materials 13, Nr. 2 (16.01.2020): 425. http://dx.doi.org/10.3390/ma13020425.
Der volle Inhalt der QuelleXu, Chenxuan, Yulu Yang, Huaping Wang, Biyi Xu, Yutao Li, Rou Tan, Xiaochuan Duan, Daxiong Wu, Ming Zhuo und Jianmin Ma. „Electrolytes for Lithium‐ and Sodium‐Metal Batteries“. Chemistry – An Asian Journal 15, Nr. 22 (14.10.2020): 3584–98. http://dx.doi.org/10.1002/asia.202000851.
Der volle Inhalt der QuelleZhou, Jianen, Chenghui Zeng, Hong Ou, Qingyun Yang, Qiongyi Xie, Akif Zeb, Xiaoming Lin, Zeeshan Ali und Lei Hu. „Metal–organic framework-based materials for full cell systems: a review“. Journal of Materials Chemistry C 9, Nr. 34 (2021): 11030–58. http://dx.doi.org/10.1039/d1tc01905h.
Der volle Inhalt der QuelleSong, Kyeongse, Daniel Adjei Agyeman, Mihui Park, Junghoon Yang und Yong-Mook Kang. „High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries“. Advanced Materials 29, Nr. 48 (21.09.2017): 1606572. http://dx.doi.org/10.1002/adma.201606572.
Der volle Inhalt der QuelleEguía-Barrio, A., E. Castillo-Martínez, X. Liu, R. Dronskowski, M. Armand und T. Rojo. „Carbodiimides: new materials applied as anode electrodes for sodium and lithium ion batteries“. Journal of Materials Chemistry A 4, Nr. 5 (2016): 1608–11. http://dx.doi.org/10.1039/c5ta08945j.
Der volle Inhalt der QuelleWang, Bingyan, Tingting Xu, Shaozhuan Huang, Dezhi Kong, Xinjian Li und Ye Wang. „Recent advances in carbon-shell-based nanostructures for advanced Li/Na metal batteries“. Journal of Materials Chemistry A 9, Nr. 10 (2021): 6070–88. http://dx.doi.org/10.1039/d0ta10884g.
Der volle Inhalt der QuelleDissertationen zum Thema "Lithium/sodium metal batteries"
David, Lamuel Abraham. „Van der Waals sheets for rechargeable metal-ion batteries“. Diss., Kansas State University, 2015. http://hdl.handle.net/2097/32796.
Der volle Inhalt der QuelleDepartment of Mechanical and Nuclear Engineering
Gurpreet Singh
The inevitable depletion of fossil fuels and related environmental issues has led to exploration of alternative energy sources and storage technologies. Among various energy storage technologies, rechargeable metal-ion batteries (MIB) are at the forefront. One dominant factor affecting the performance of MIB is the choice of electrode material. This thesis reports synthesis of paper like electrodes composed for three representative layered materials (van der Waals sheets) namely reduced graphene oxide (rGO), molybdenum disulfide (MoS₂) and hexagonal boron nitride (BN) and their use as a flexible negative electrode for Li and Na-ion batteries. Additionally, layered or sandwiched structures of vdW sheets with precursor-derived ceramics (PDCs) were explored as high C-rate electrode materials. Electrochemical performance of rGO paper electrodes depended upon its reduction temperature, with maximum Li charge capacity of 325 mAh.g⁻¹ observed for specimen annealed at 900°C. However, a sharp decline in Na charge capacity was noted for rGO annealed above 500 °C. More importantly, annealing of GO in NH₃ at 500 °C showed negligible cyclability for Na-ions while there was improvement in electrode's Li-ion cycling performance. This is due to increased level of ordering in graphene sheets and decreased interlayer spacing with increasing annealing temperatures in Ar or reduction at moderate temperatures in NH₃. Further enhancement in rGO electrodes was achieved by interfacing exfoliated MoS₂ with rGO in 8:2 wt. ratios. Such papers showed good Na cycling ability with charge capacity of approx. 225.mAh.g⁻¹ and coulombic efficiency reaching 99%. Composite paper electrode of rGO and silicon oxycarbide SiOC (a type of PDC) was tested as high power-high energy anode material. Owing to this unique structure, the SiOC/rGO composite electrode exhibited stable Li-ion charge capacity of 543.mAh.g⁻¹ at 2400 mA.g⁻¹ with nearly 100% average cycling efficiency. Further, mechanical characterization of composite papers revealed difference in fracture mechanism between rGO and 60SiOC composite freestanding paper. This work demonstrates the first high power density silicon based PDC/rGO composite with high cyclic stability. Composite paper electrodes of exfoliated MoS₂ sheets and silicon carbonitride (another type of PDC material) were prepared by chemical interfacing of MoS₂ with polysilazane followed by pyrolysis . Microscopic and spectroscopic techniques confirmed ceramization of polymer to ceramic phase on surfaces on MoS₂. The electrode showed classical three-phase behavior characteristics of a conversion reaction. Excellent C-rate performance and Li capacity of 530 mAh.g⁻¹ which is approximately 3 times higher than bulk MoS₂ was observed. Composite papers of BN sheets with SiCN (SiCN/BN) showed improved electrical conductivity, high-temperature oxidation resistance (at 1000 °C), and high electrochemical activity (~517 mAh g⁻¹ at 100 mA g⁻¹) toward Li-ions generally not observed in SiCN or B-doped SiCN. Chemical characterization of the composite suggests increased free-carbon content in the SiCN phase, which may have exceeded the percolation limit, leading to the improved conductivity and Li-reversible capacity. The novel approach to synthesis of van der Waals sheets and its PDC composites along with battery cyclic performance testing offers a starting point to further explore the cyclic performance of other van der Waals sheets functionalized with various other PDC chemistries.
Kautz, Jr David Joseph. „Investigation of Alkali Metal-Host Interactions and Electrode-Electrolyte Interfacial Chemistries for Lean Lithium and Sodium Metal Batteries“. Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103946.
Der volle Inhalt der QuelleDoctor of Philosophy
The ever-increasing demand for high energy storage in personal electronics, electric vehicles, and grid energy storage has driven for research to safely enable alkali metal (Li and Na) anodes for practical energy storage applications. Key research efforts have focused on developing alkali metal composite anodes, as well as improving the electrode-electrolyte interfacial chemistries. A fundamental understanding of the electrode interactions with the electrolyte or host materials is necessary to progress towards safer batteries and better battery material design for long-term applications. Improving the interfacial interactions between the host-guest or electrode-electrolyte interfaces allows for more efficient charge transfer processes to occur, reduces interfacial resistance, and improves overall stability within the battery. As a result, there is great potential in understanding the host-guest and electrode-electrolyte interactions for the design of longer-lasting and safer batteries. This dissertation focuses on probing the interfacial chemistries of the battery materials to enable "lean" alkali metal composite anodes and improve electrode stability through electrolyte interactions. The anode-host interactions are first explored through preliminary design development for "lean" alkali composite anodes using carbon nanofiber (CNF) electrodes. The effect on increasing the crystallinity of the CNF host on the Li- and Na-CNF interactions for enhanced electrochemical performance and stability is then investigated. In an effort to improve the capabilities of Na batteries, the electrode-electrolyte interactions of the cathode- and anode-electrolyte interfacial chemistries using sodium borate salts are probed using electrochemical and X-ray analysis. Overall, this dissertation explores how the interfacial interactions affect, and improve, battery performance and stability. This work provides insights for understanding alkali metal-host and electrode-electrolyte properties and guidance for potential future research of the stabilization for Li- and Na-metal batteries.
Hwang, Jinkwang. „A Study on Enhanced Electrode Performance of Li and Na Secondary Batteries by Ionic Liquid Electrolytes“. Kyoto University, 2019. http://hdl.handle.net/2433/245327.
Der volle Inhalt der QuelleLiu, Chenjuan. „Exploration of Non-Aqueous Metal-O2 Batteries via In Operando X-ray Diffraction“. Doctoral thesis, Uppsala universitet, Strukturkemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-330889.
Der volle Inhalt der QuelleWang, Luyuan Paul. „Matériaux à hautes performance à base d'oxydes métalliques pour applications de stockage de l'énergie“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI031/document.
Der volle Inhalt der QuelleThe heart of battery technology lies primarily in the electrode material, which is fundamental to how much charge can be stored and how long the battery can be cycled. Tin dioxide (SnO₂) has received tremendous attention as an anode material in both Li-ion (LIB) and Na-ion (NIB) batteries, owing to benefits such as high specific capacity and rate capability. However, large volume expansion accompanying charging/discharging process results in poor cycleability that hinders the utilization of SnO₂ in commercial batteries. To this end, engineering solutions to surmount the limitations facing SnO₂ as an anode in LIB/NIB will be presented in this thesis. The initial part of the thesis focuses on producing SnO₂ and rGO (reduced graphene oxide)/SnO₂ through laser pyrolysis and its application as an anode. The following segment studies the effect of nitrogen doping, where it was found to have a positive effect on SnO₂ in LIB, but a detrimental effect in NIB. The final part of the thesis investigates the effect of matrix engineering through the production of a ZnSnO₃ compound. Finally, the obtained results will be compared and to understand the implications that they may possess
Gao, Suning [Verfasser], Rudolf [Gutachter] Holze, Rudolf [Akademischer Betreuer] Holze und Qunting [Gutachter] Qu. „Layered transition metal sulfide- based negative electrode materials for lithium and sodium ion batteries and their mechanistic studies / Suning Gao ; Gutachter: Rudolf Holze, Qunting Qu ; Betreuer: Rudolf Holze“. Chemnitz : Technische Universität Chemnitz, 2020. http://d-nb.info/1219910309/34.
Der volle Inhalt der QuelleAdelhelm, Philipp. „From Lithium-Ion to Sodium-Ion Batteries“. Diffusion fundamentals 21 (2014) 5, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32397.
Der volle Inhalt der QuelleNose, Masafumi. „Studies on Sodium-containing Transition Metal Phosphates for Sodium-ion Batteries“. 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215565.
Der volle Inhalt der QuelleClark, John. „Computer modelling of positive electrode materials for lithium and sodium batteries“. Thesis, University of Bath, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616648.
Der volle Inhalt der QuelleTsukamoto, Hisashi. „Synthesis and electrochemical studies of lithium transition metal oxides for lithium-ion batteries“. Thesis, University of Aberdeen, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327428.
Der volle Inhalt der QuelleBücher zum Thema "Lithium/sodium metal batteries"
Zhang, Ji-Guang, Wu Xu und Wesley A. Henderson. Lithium Metal Anodes and Rechargeable Lithium Metal Batteries. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44054-5.
Der volle Inhalt der QuelleChao, Dongliang. Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3080-3.
Der volle Inhalt der QuelleInnovative Antriebe 2016. VDI Verlag, 2016. http://dx.doi.org/10.51202/9783181022894.
Der volle Inhalt der QuelleXu, Wu, Ji-Guang Zhang und Wesley A. Henderson. Lithium Metal Anodes and Rechargeable Lithium Metal Batteries. Springer, 2018.
Den vollen Inhalt der Quelle findenChao, Dongliang. Graphene Network Scaffolded Flexible Electrodes―From Lithium to Sodium Ion Batteries. Springer, 2018.
Den vollen Inhalt der Quelle findenDemir-Cakan, Rezan. Li-S Batteries: The Challenges, Chemistry, Materials, and Future Perspectives. World Scientific Publishing Co Pte Ltd, 2017.
Den vollen Inhalt der Quelle findenYoon, Gabin. Theoretical study on graphite and lithium metal as anode materials for next-generation rechargeable batteries. Springer, 2021.
Den vollen Inhalt der Quelle findenC, Brewer J., NASA Aerospace Flight Battery Systems Program. und George C. Marshall Space Flight Center., Hrsg. The 1997 NASA Aerospace Workshop. [Washington, DC]: National Aeronautics and Space Administration, Marshall Space Flight Center, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Lithium/sodium metal batteries"
Abraham, K. M. „Rechargeable Sodium and Sodium-Ion Batteries“. In Lithium Batteries, 349–67. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118615515.ch16.
Der volle Inhalt der QuelleImanishi, Nobuyuki, und Osamu Yamamoto. „Lithium–Air Batteries“. In Metal–Air and Metal–Sulfur Batteries, 21–64. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372280-3.
Der volle Inhalt der QuelleTachikawa, Naoki, Nobuyuki Serizawa und Yasushi Katayama. „Lithium Metal Anode“. In Next Generation Batteries, 311–21. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_28.
Der volle Inhalt der QuelleLiu, Bin, Wu Xu und Ji-Guang Zhang. „Stabilization of Lithium-Metal Anode in Rechargeable Lithium-Air Batteries“. In Metal-Air Batteries, 11–40. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807666.ch2.
Der volle Inhalt der QuelleLiang, Zhuojian, Guangtao Cong, Yu Wang und Yi-Chun Lu. „Lithium-Air Battery Mediator“. In Metal-Air Batteries, 151–205. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807666.ch7.
Der volle Inhalt der QuelleKanamura, Kiyoshi, und Yukihiro Nakabayashi. „Rechargeable Lithium Metal Battery“. In Next Generation Batteries, 17–35. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_2.
Der volle Inhalt der QuelleDimov, Nikolay. „Development of Metal Alloy Anodes“. In Lithium-Ion Batteries, 1–25. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-34445-4_11.
Der volle Inhalt der QuelleLiu, Bin, und Huilin Pan. „Rechargeable Lithium Metal Batteries“. In Nanostructured Materials for Next-Generation Energy Storage and Conversion, 147–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-58675-4_4.
Der volle Inhalt der QuelleCho*, Jaephil, Byungwoo Park und Yang-kook Sun. „Overcharge Behavior of Metal Oxide-Coated Cathode Materials“. In Lithium-Ion Batteries, 1–33. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-34445-4_10.
Der volle Inhalt der QuelleHameed, A. Shahul, Kei Kubota und Shinichi Komaba. „CHAPTER 8. From Lithium to Sodium and Potassium Batteries“. In Future Lithium-ion Batteries, 181–219. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016124-00181.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lithium/sodium metal batteries"
Boi, Mauro, Daniele Battaglia, Andrea Salimbeni und Alfonso Damiano. „Energy Storage Systems Based on Sodium Metal Halides Batteries“. In 2019 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2019. http://dx.doi.org/10.1109/ecce.2019.8913257.
Der volle Inhalt der QuelleBriscoe, J. Douglass, und Gabriel L. Castro. „Transition Metal Fluoride Cathodes for Lithium Thermal Batteries“. In Aerospace Power Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-1401.
Der volle Inhalt der QuelleLiu, Huihui, Yibo Zhao, Shou-Hang Bo und Sung-Liang Chen. „Application of photoacoustic imaging for lithium metal batteries“. In Advanced Optical Imaging Technologies III, herausgegeben von P. Scott Carney, Xiao-Cong Yuan und Kebin Shi. SPIE, 2020. http://dx.doi.org/10.1117/12.2575184.
Der volle Inhalt der QuelleBoi, Mauro, Andrea Salimbeni und Alfonso Damiano. „A Thévenin circuit modelling approach for sodium metal halides batteries“. In IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2017. http://dx.doi.org/10.1109/iecon.2017.8217334.
Der volle Inhalt der QuelleRijssenbeek, Job, Herman Wiegman, David Hall, Christopher Chuah, Ganesh Balasubramanian und Conor Brady. „Sodium-metal halide batteries in diesel-battery hybrid telecom applications“. In INTELEC 2011 - 2011 33rd International Telecommunications Energy Conference. IEEE, 2011. http://dx.doi.org/10.1109/intlec.2011.6099819.
Der volle Inhalt der QuelleWilkinson, Harvey, und Sylvain Cornay. „Avestor¿ Lithium-Metal-Polymer Batteries Deployed throughout North America“. In INTELEC 05 - Twenty-Seventh International Telecommunications Conference. IEEE, 2005. http://dx.doi.org/10.1109/intlec.2005.335095.
Der volle Inhalt der QuelleHolme, T. „Requirements and Testing Protocols for Lithium Metal Secondary Batteries“. In 2018 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2018. http://dx.doi.org/10.7567/ssdm.2018.f-1-01.
Der volle Inhalt der QuelleMALCHARCZIKOVÁ, Jitka, Lukáš KROČA, Miroslav KURSA und Pavel HORÁK. „THE POSSIBILITIES OF RECOVERY OF SELECTED METALS FROM LITHIUM BATTERIES BY PYROMETALLURGICAL WAY“. In METAL 2019. TANGER Ltd., 2019. http://dx.doi.org/10.37904/metal.2019.948.
Der volle Inhalt der QuelleRanganath, Suman Bhasker, Steven Hartman, Ayorinde S. Hassan, Collin D. Wick und B. Ramu Ramachandran. „Interfaces in Metal, Alloy, and Metal Oxide Anode Materials for Lithium Ion Batteries“. In Annual International Conference on Materials science, Metal and Manufacturing ( M3 2016 ). Global Science & Technology Forum ( GSTF ), 2016. http://dx.doi.org/10.5176/2251-1857_m316.28.
Der volle Inhalt der QuelleTilley, A. R., und R. N. Bull. „The Design and Performance of Various Types of Sodium/Metal Chloride Batteries“. In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9227.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Lithium/sodium metal batteries"
McBreen, J. Lithium and sodium polymer electrolyte batteries. Final report. Office of Scientific and Technical Information (OSTI), Dezember 1993. http://dx.doi.org/10.2172/10129850.
Der volle Inhalt der QuelleKerr, John B. CRADA Final Report: Characterization of Failure Modes in Lithium Metal Batteries. Office of Scientific and Technical Information (OSTI), Juni 2005. http://dx.doi.org/10.2172/1157018.
Der volle Inhalt der QuelleDzwiniel, Trevor L., Krzysztof Z. Pupek und Gregory K. Krumdick. Scale-up of Metal Hexacyanoferrate Cathode Material for Sodium Ion Batteries. Office of Scientific and Technical Information (OSTI), Oktober 2016. http://dx.doi.org/10.2172/1329386.
Der volle Inhalt der QuelleHammel, C. J. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 3, Transport of sodium-sulfur and sodium-metal-chloride batteries. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10187389.
Der volle Inhalt der QuelleTrickett, D. Current Status of Health and Safety Issues of Sodium/Metal Chloride (Zebra) Batteries. Office of Scientific and Technical Information (OSTI), Dezember 1998. http://dx.doi.org/10.2172/7101.
Der volle Inhalt der QuelleXiao, Xingcheng. In situ Diagnostics of Coupled Electrochemical-Mechanical Properties of Solid Electrolyte Interphases on Lithium Metal Rechargeable Batteries. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1653427.
Der volle Inhalt der QuelleYakovleva, Marina. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES. Office of Scientific and Technical Information (OSTI), Dezember 2012. http://dx.doi.org/10.2172/1164223.
Der volle Inhalt der Quelle