Dissertationen zum Thema „Lithium-ion battery cells“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Lithium-ion battery cells" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Zhao, Mingchuan. „Electrochemical Studies of Lithium-Ion Battery Anode Materials in Lithium-Ion Battery Electrolytes“. Ohio University / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1004388277.
Der volle Inhalt der QuelleBest, Adam Samuel 1976. „Lithium-ion conducting electrolytes for use in lithium battery applications“. Monash University, School of Physics and Materials Engineering, 2001. http://arrow.monash.edu.au/hdl/1959.1/9240.
Der volle Inhalt der QuelleChoi, Seungdon. „Soft chemistry synthesis and structure-property relationships of lithium-ion battery cathodes“. Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3025204.
Der volle Inhalt der QuelleAnnavajjula, Vamsi Krishna. „A FAILURE ACCOMMODATING BATTERY MANAGEMENT SYSTEM WITH INDIVIDUAL CELL EQUALIZERS AND STATE OF CHARGE OBSERVERS“. University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1190318540.
Der volle Inhalt der QuelleZhu, Wei. „A Smart Battery Management System for Large Format Lithium Ion Cells“. University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1301687506.
Der volle Inhalt der QuelleLimoge, Damas Wilks. „Reduced-order modeling and adaptive observer design for lithium-ion battery cells“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111722.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 167-171).
This thesis discusses the design of a control-oriented modeling approach to Lithium- Ion battery modeling, as well as the application of adaptive observers to this structure. It begins by describing the fundamental problem statement of a battery management system (BMS), and why this is challenging to solve. It continues by describing, in brief, several different modeling techniques and their use cases, then fully expounds two separate high fidelity models. The first model, the ANCF, was initiated in previous work, and has been updated with novel features, such as dynamic diffusion coefficients. The second model, the ANCF II, was developed for this thesis and updates the previous model to better solve the problems facing the construction of an adaptive observer, while maintaining its model accuracy. The results of these models are presented as well. After establishing a model with the desired accuracy and complexity, foundational observers are designed to estimate the states and parameters of the time-varying ionic concentrations in the solid electrode and electrolyte, as well as an a-priori estimate of the molar flux. For the solid electrode, it is shown that a regressor matrix can be constructed for the observer using both spatial and temporal filters, limiting the amount of additional computation required for this purpose. For the molar flux estimate, it is shown that fast convergence is possible with coefficients pertaining to measurable inputs and outputs, and filters thereof. Finally, for the electrolyte observer, a novel structure is established to restrict learning only along unknown degrees of freedom of the model system, using a Jacobian steepest descent approach. Following the results of these observers, an outline is sketched for the application of a machine learning algorithm to estimate the nonlinear effects of cell dynamics.
by Damas Wilks Limoge.
S.M.
Abaza, Ahmed. „Safety of automotive lithium-ion battery cells under abusive conditions : innovation report“. Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/105583/.
Der volle Inhalt der QuelleStephenson, David E. „Modeling of Electronic and Ionic Transport Resistances Within Lithium-Ion Battery Cathodes“. Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2437.pdf.
Der volle Inhalt der QuelleChahwan, John A. „Vanadium-redox flow and lithium-ion battery modelling and performance in wind energy applications“. Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100223.
Der volle Inhalt der QuelleRoselli, Eric (Eric J. ). „Design of a testing device for quasi-confined compression of lithium-ion battery cells“. Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68922.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 29).
The Impact and Crashworthiness Laboratory at MIT has formed a battery consortium to promote research concerning the crash characteristics of new lithium-ion battery technologies as used in automotive applications. Within a broad range of tests, there was a need to perform compression tests with a variable amount of confinement. A spring-loaded detainment device was designed which allows the battery to be confined in the axis perpendicular to compression without completely rigid walls. This provides a testing environment far more similar to the conditions of a real world crash situation. During an automobile crash event, the battery pack acts as a unit where each individual cell may experience a range of stresses from nearby cells or pack walls. An appropriate device was designed in Solidworks and used in the MIT ICL for testing with adjustable confinement during compression testing. MIT's research as a part of the consortium will continue for 3 more years beyond these initial tests. Never the less, the coming computational and constitutive models will be built using initial individual cell testing. Any model of a complete battery pack will use the material properties derived from cell testing.
by Eric Roselli.
S.B.
Chebiam, Ramanan Venkata. „Lithium-ion battery cathodes : structural and chemical stabilities of layered cobalt and nickel oxides /“. Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3008298.
Der volle Inhalt der QuelleFiller, Frank E. „A pulsed power system design using lithium-ion batteries and one charger per battery“. Thesis, Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Dec/09Dec%5FFiller.pdf.
Der volle Inhalt der QuelleThesis Advisor(s): Julian, Alexander L. Second Reader: Crisiti, Roberto. "December 2009." Description based on title screen as viewed on January 28, 2010. Author(s) subject terms: Pulsed power, charger, buck converter, field programmable gate array (FPGA), lithium-ion batteries. Includes bibliographical references (p. 77-79). Also available in print.
Prakash, Shruti. „The development and fabrication of miniaturized direct methanol fuel cells and thin-film lithium ion battery hybrid system for portable applications“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28279.
Der volle Inhalt der QuelleCommittee Chair: Kohl, Paul; Committee Member: Fuller, Tom; Committee Member: Gray, Gary; Committee Member: Liu, Meilin; Committee Member: Meredith, Carson; Committee Member: Rincon-Mora, Gabriel.
Svens, Pontus. „Methods for Testing and Analyzing Lithium-Ion Battery Cells intended for Heavy-Duty Hybrid Electric Vehicles“. Doctoral thesis, KTH, Tillämpad elektrokemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145166.
Der volle Inhalt der QuelleLitiumjonbatterier anpassade för användning i tunga hybridfordon förbättras kontinuerligt med avseende på prestanda och livslängd men har fortfarande begränsningar som måste beaktas vid utveckling av nya hybridfordon. Syftet med denna avhandling har varit att studera och utvärdera potentiella prov- och analysmetoder lämpliga för användning i arbetet med att maximera livslängd och utnyttjandegrad av batterier i tunga hybridfordon. Ett koncept för battericykling på fordon har utvärderats. Arbetet innefattade utveckling av testutrustning, verifiering av hårdvara och mjukvara samt en längre periods validering på lastbilar. Arbetet har visat att konceptet har stor potential för utvärdering av strategier för användandet av batterier i hybridfordon, men är mindre användbar för åldring av batterier. Batterier kapslade i flexibelt förpackningsmaterial har undersökts med avseende på kapslingens hållbarhet i en krävande hybridlastbilsmiljö. Ingen påverkan på fuktinträngning kunde påvisas efter vibration och temperaturcykling av de testade battericellerna. Åldring av kommersiella battericeller av typen litiummanganoxid - litiumkoboltoxid/litiumtitanoxid (LMO-LCO/LTO) undersöktes med olika elektrokemiska metoder för att få en djupare förståelse för prestandaförändringens ursprung och för att förstå konsekvenserna av åldrandet ur en fordonstillverkares användarperspektiv. Undersökningen visade att både kapacitetsförlust och impedanshöjning till största delen var kopplat till den positiva elektroden för denna batterityp. Post-mortem analys av material från cyklade och kalenderåldrade kommersiella battericeller av typen LMO-LCO/LTO och LiFePO4/grafit utfördes för att avslöja detaljer kring åldringsmekanismerna för dessa cellkemier. Vid analys av cyklade LMO-LCO/LTO celler påvisades mangan i den negativa elektroden samt uppvisade den positiva elektroden kraftigast åldring. Vid analys av cyklade LFP/grafit celler påvisades järn i den negativa elektroden samt uppvisade den negativa elektroden kraftigast åldring.
QC 20140520
Mason, Amber J. „Material characterization and axial loading response of pouch lithium ion battery cells for crash safety“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112040.
Der volle Inhalt der QuelleThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 75-76).
Recent research conducted at MIT's Impact and Crashworthiness Laboratory (ICL) has focused on material characterization of lithium ion battery cell components for use in the development of an accurate and practical computational model intended to predict mechanical deformation and related short circuit behavior of Li-ion battery cells and stacks in real world impact scenarios. In an effort to continue to refine and validate this modeling tool, characterization testing was conducted on battery cell pouch material using uniaxial stress and biaxial punch tests. At the full cell level, hemispherical punch indentation validation testing and internal electric short circuit testing was conducted on large, high energy pouch cells. Further investigations at the full cell level examined the buckling response of small pouch cells as a result of in-plane axial compression under varying degrees of confinement. To this end, a custom testing device was designed and constructed to provide controllable cell confinement for axial loading experimentation purposes. All experimentation results will feed into a computational model of the cell extended for use in comprehensive mechanical deformation simulation modeling.
by Amber J. Mason.
Nav.E.
S.M.
Lenze, Georg [Verfasser]. „Simulation-supported investigation of manufacturing impacts on the performance of lithium-ion-battery cells / Georg Lenze“. München : Verlag Dr. Hut, 2020. http://d-nb.info/1219471402/34.
Der volle Inhalt der QuelleCampbell, John Earl Jr. „Development of a constitutive model predicting the point of short-circuit within lithium-ion battery cells“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/74891.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 56-57).
The use of Lithium Ion batteries continues to grow in electronic devices, the automotive industry in hybrid and electric vehicles, as well as marine applications. Such batteries are the current best for these applications because of their power density and cyclic life. The United States Navy and the automotive industries have a keen interest in making and maintaining these batteries safe for use within the public. The testing necessary to ensure this safety is time consuming and expensive to manufacturers, thus a constitutive model that can emulate the effects of mechanical abuse to a battery cell or pack is necessary to be able to rapidly test various configurations and enclosures to preclude possible short circuit and thermal runaway of an installed battery is necessary. Homogenized computational cells have been developed at the MIT Crashworthiness laboratory and this research validates and refines those models for use in future work with both cylindrical and prismatic cells.A total of 22 mechanical abuse tests were conducted on partially charged cylindrical and pouch/prismatic Li-Jon cells under multiple loading conditions. The tests included lateral compression by cylindrical rods of various sizes, three point bending tests, and hemispherical punch tests on cylindrical cells. For the pouch/prismatic cells, the tests included hemispherical punch tests of various sizes as well as a conical punch test, vertical cylindrical punch test, and rectangular punch test. The tests measured the force imparted to the cell, linear displacement oft he punch into the cell structure, voltage output of the cell, as well as the temperature at the surface of the cell.The test data was utilized to validate and refine homogenous computational models for both cylindrical and pouch/prismatic Li-Ion cells for future use in the MIT Crashworthiness laboratory. The computational models subjected to simulated tests that were conducted on actual cells in the laboratory conclude that the computational models are valid and behave well compared to actual cells.This paper reports on results generated for the Li-Ion Battery Consortium at MIT.
by John Earl Campbell Jr.
Nav.E.and S.M.
Dareini, Ali. „Prediction and analysis of model’s parameters of Li-ion battery cells“. Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-11799.
Der volle Inhalt der QuelleKönig, Nikolaj, und Johan Norlin. „Quality Improvements for Anode Coating in Lithium-Ion Battery Cell Manufacturing : A Case Study at Northvolt Labs“. Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik, konst och samhälle, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85997.
Der volle Inhalt der QuelleAnvändandet av litiumjonbatterier (LIB) som energilagring är en potentiell lösning för omställning till ett elektrifierat samhälle. Tillverkningsprocessen för LIBs är dock komplex och har en tendens att generera stora mängder kassationer på grund av olika typer av defekter. Denna studie ämnar att undersöka egenskaperna hos en av defekterna som kallas krater som kan förekomma i en av delprocesserna för litiumjonbatteritillverkning, elektrodbeläggning, där batteriets elektroder skapas genom att en blandning av aktiva material appliceras på en metallfolie. Kratern förekommer som en cirkulär form på den belagda ytan av anodelektroden. Studien genomfördes hos batteritillverkaren Northvolt Labs och använde en struktur enligt DMAIC cykeln. Syftet med studien var att fastställa samband mellan olika processparametrar och kraterformation för två olika processer, elektrodbeläggning och dess föregångare, framställning av den aktiva materialblandningen. Genom att använda datamodellerna linjär regression, CART-regression, en regulariserad linjär regression samt ett experiment kunde processparametrar och egenskaper som påverkar kraterbildningen etableras. Resultaten från datamodellerna indikerar att varvtalet i pumpen som tillför ytbeläggningsmaskinen med den aktiva materialblandningen samt trycket i filterpumpen har den största effekten på kraterbildning. Vidare så påverkar tiden som den aktiva materialblandningen lagras innan den används i beläggningsprocessen. Resultaten indikerar att ju längre tid en aktiv materialblandning lagras, desto mer kraterbildning. Samtliga resultat som nämnts ovan anvisar att de olika stadier den aktiva materialblandningen överförs bland olika behållare och verktyg kan ge upphov till kraterbildning. Ytterligare resultat från datamodellerna indikerar att en minskad tjocklek av den belagda ytan, mätt med enheten g/cm2, kan påvisa när kratrar uppstår. Detta resultat kan härledas till att kratrarna orsakar en nedåtbuktning i den belagda ytan. Utifrån experimentet med den aktiva materialblandningen kunde det fastlås att kraterliknande defekter kunde genereras genom att kontaminera blandningen med smörjfett. Dessa defekter är sannolikt inte besläktade med kratern, men dess uppkomst ger värdefulla insikter hur kontaminering kan påverka kvaliteten på den belagda ytan. Utöver resultat från datamodellerna och experimentet så presenterar även denna studie förslag på hur framtida undersökningar av statistisk karaktär kan förbättras. Studien föreslår också konkreta åtanganden som kan genomföras med syfte att reducera kraterbildning. Detta inkluderar hur ett projekt med syfte att fastslå den optimala lagringstiden för den aktiva materialblandningen innan den används i ytbeläggningsprocessen kan utformas. Vidare rekommenderas att ytbeläggningsprocessen övervakas med hjälp av att upprätta styrdiagram för ytbeläggningens nivåförändringar. Följaktligen kan stora förändringar i ytbeläggningens jämnhet detekteras, vilket kan vara en indikator på kraterbildning. Studien rekommenderar också att tillägga kontaminering av smörjfett i den aktiva materialblandningen som en potentiell risk i Northvolts PFMEA. Denna rekommendation kompletteras även med förslag på åtanganden som kan tas för att hantera risken för kontaminering av smörjfett.
Kasavajjula, Uday S. „Role of phase transformation processes in determining the discharge behavior of electrodes in lithium ion battery a dissertation presented to the faculty of the Graduate School, Tennessee Technological University /“. Click to access online, 2009. http://proquest.umi.com/pqdweb?index=22&sid=4&srchmode=1&vinst=PROD&fmt=6&startpage=-1&clientid=28564&vname=PQD&RQT=309&did=1756844351&scaling=FULL&ts=1250862718&vtype=PQD&rqt=309&TS=1250864217&clientId=28564.
Der volle Inhalt der QuelleXu, Mingming. „Electrochemical Kinetics Studies of Copper Anode Materials in Lithium Battery Electrolyte“. Ohio University / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1127139833.
Der volle Inhalt der QuelleKayser, Steffen Alexander Verfasser], Josef [Akademischer Betreuer] Granwehr und Joachim [Akademischer Betreuer] [Mayer. „In-operando characterization of transport and transformation processes in lithium-ion and metal-air battery cells / Steffen Alexander Kayser ; Josef Granwehr, Joachim Mayer“. Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1189672375/34.
Der volle Inhalt der QuelleZenati, Ali. „Gestion haut niveau et suivi en ligne de l'état de santé des batteries lithium-ion“. Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0391/document.
Der volle Inhalt der QuelleLithium-ion batteries are considered nowadays as the optimal issue for the energy storage systems, it is mainly due to their high energy and power density. Their performances, lifetime, and reliability are related and depend on the operating conditions such as the temperature and requested current by the application. And in order to track the evolution of the ageing of the battery, the determination of its State-Of-Health -SOH- is a major function to consider. This thesis presents both methodologies and techniques developed for the management of the lifetime of lithium-ion battery, and more particularly the assessment of its state-of-health, based on its own main parameters which are the capacity and the ohmic resistance. This approach allows to switch from a static SOH (based on a predefined ageing model, which take into account the calendar and cycling ageing of the battery, according to some characteristics such as the temperature and the courant of the battery tracked in real time) to a dynamic SOH (self-adaptive) using an online assessment of the previous parameters according to the operating conditions. The first chapter is an overview about the lithium-ion technology: characteristics, performances, cell design, choice and nature of the electrodes... The operating principle with the general equations are also developed. The second chapter is a state of the art of the lifetime prediction methodologies with the different kinds of classification of models and prediction techniques. Then in the third chapter, we will discuss our methodologies and the developed techniques, such as the use of statistics, fuzzy logic and rules of ageing to assess a dynamic state of health of the battery, which not only does take into account the static SOH (calendar and cycling ageing), but also considers the evolution of the ohmic resistance and the capacity of the battery, depending on the time and the operating conditions. This allows taking into consideration unlikely phenomena. Finally, in the last chapter, we will expose obtained results from validation tests. These tests were done under a power electrical testbench and a rapid prototyping testbench with real cells
Huang, Shan. „Nano-chemo-mechanics of advanced materials for hydrogen storage and lithium battery applications“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42710.
Der volle Inhalt der QuelleSchlasza, Christian. „Analysis of aging mechanisms in Li-ion cells used for traction batteries of electric vehicles and development of appropriate diagnostic concepts for the quick evaluation of the battery condition“. Thesis, Belfort-Montbéliard, 2016. http://www.theses.fr/2016BELF0155.
Der volle Inhalt der QuelleIn this thesis, the aging mechanisms withing Li-ion cells are analyzed on a theoretical level, supported by an FMEA(Failure ode and Effects Analysis). The focus lies on the group of lithium iron phosphate (LFP) cells used fortraction batteries in electric vehicles. Scope of the experimental part of the thesis is the development of a diagnosticconcept for the quick battery state determination. A group of high capacity LFP cells (70Ah) designed for tractionpurposes in electric vehicles is aged artificially and investigated afterwards by impedance measurements in the timeand frequency domain. Electrochemical impedance spectroscopy (EIS) is found to reveal interesting information onthe battery's State-of-Health (SOH).For the interpretation of the measurement results, battery models are employed. Different equivalent circuit models(ECMs) are compared and an appropriate model is chosen, which is used for the SOC (State-of-Charge)determination and extended for the SOH (State-of-Health) determination. An SOH determination concept isdeveloped, which allows the approximation of the cell capacity in less than 30s, if the battery and environmentalconditions, such as the temperature and the cell's SOC, are known
Wennberg, Emma. „Solcellssystem i kombination med batterilager : En fallstudie av Uppsalas nya stadsbussdepå“. Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325218.
Der volle Inhalt der QuelleKaplenko, Oleksii. „Studium elektrodových materiálů pro Li-Ion akumulátory pomocí elektronové mikroskopie“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-377024.
Der volle Inhalt der QuelleJaššo, Kamil. „Vliv lisovacího tlaku na elektrochemické vlastnosti elektrod pro akumulátory Li-S“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-254484.
Der volle Inhalt der QuelleRen, Yu. „Applications of ordered mesoporous metal oxides : energy storage, adsorption, and catalysis“. Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/1705.
Der volle Inhalt der QuelleAmigues, Adrien Marie. „New metastable cathode materials for lithium-ion batteries“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/276299.
Der volle Inhalt der QuelleNagpure, Suraj R. „SYNTHESIS OF TITANIA THIN FILMS WITH CONTROLLED MESOPORE ORIENTATION: NANOSTRUCTURE FOR ENERGY CONVERSION AND STORAGE“. UKnowledge, 2016. http://uknowledge.uky.edu/cme_etds/67.
Der volle Inhalt der QuelleZhang, Yizhou. „Modularized Battery Management Systems for Lithium-Ion Battery Packs in EVs“. Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-194316.
Der volle Inhalt der QuelleBMS (eng. battery management system) har till uppgift att se till att viktiga parametrar såsom tillspännings- och temperaturintervall upprätthålls för varje individuell battericell. Då en battericells beteende är ickelinjärt är det svårt att bestämma cellens interna karakteristika direkt. Att kunna förutsäga dessa karakteristika för ett komplett batteripack kommer att en mycket viktig funktion hos framtida BMS. I detta examensarbete har en modellbaserad tillståndsestimeringsmetod med användande av adaptiv filtrering undersökts. Olika batterimodeller har studerats med avseende på komplexitet och noggrannhet. Efter introduktionen av olika metoder för adaptiv filtrering har dessa metoder implementerats i en BMS modell. Utvärdering av de olika metoderna för att åstadkomma tillståndsestimering har sedan utförts med avseende på dynamisk prestanda, krav på beräkningskraft och noggrannhet hos de resulterande estimaten. Data från uppmätta kördata från ett fordon har använts som referens för att jämföra de olika estimaten. Slutligen presenteras en jämförelse mellan de olika tillståndsestimeringsmetodernas prestanda när de appliceras på de olika batterimodellerna.
Demeaux, Julien. „Impact des phénomènes aux interfaces électrode/électrolyte sur les performances des batteries Li-ion haute tension : faiblesses et atouts des électrolytes à base de carbonates d'alkyles et de sulfones face aux électrodes LiNi0,4Mn1,6 O4 et Li4Ti5O12“. Thesis, Tours, 2013. http://www.theses.fr/2013TOUR4032/document.
Der volle Inhalt der QuelleLiNi0.4Mn1.6O4 (LNMO)/Li4Ti5O12 (LTO) accumulators should theoretically achieve the power and energy densities that provide sufficient autonomy to electric vehicles. However, two major issues related to the use of LNMO limit their performances: the pronounced oxidation of the alkylcarbonate-based electrolytes and the transition metal ion (Mn2+, Ni2+) dissolution. The ethylene carbonate (EC)-based formulations get an ability to form polymer-covering films onto the active material. The galvanostatic cycling tests, after storage or not, confirm the superiority of these electrolytes, leading to reduced capacity losses of the LNMO electrode. Furthermore, sulfones are promising compounds to be applied to LNMO/LTO batteries. The use of symmetric and asymmetric cells demonstrates that sulfones are non-reactive towards the LNMO/electrolyte and LTO/electrolyte interfaces. However, this non-reactivity does not allow the deposition of polymer films, which would have enabled to stop the Mn2+ and Ni2+ dissolution from the positive electrode. This results in degraded performances of batteries at 30°C compared to those using EC in electrolytes
Liiv, Oliver. „Industrialization of Lithium-Ion Prismatic Battery Cell for the Automotive Industry“. Thesis, KTH, Industriell produktion, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278159.
Der volle Inhalt der QuelleEnergisystem genomgår en snabb omväxling till allt mer hållbara lösningar, vilket kommer påverka våra liv markant. Dessa snabba omväxlingar kommer påverka samt främja sättet hur vi driver våra bilar, värmer våra hus och försörjer våra industrier, flera år framåt. [1] Bilsektorn som har skiftat sitt fokus till elektrifiering av sina bilar, där antalet sålda elbilar förväntas att öka sextifaldigt mellan 2018 och 2050. Detta kommer att leda till att cirka 2 miljarder elbilar kommer att åka på vägarna globalt och alla dessabilar kommer behöva framförallt litiumjonbatterier. [1] Majoriteten av biltillverkare i Europa har börjatutveckla framtida elektrifierade bilmodeller. Tillverkningen av litiumjonbatterier för elbilar i Europa utgörendast 2.1 % av den globala tillverkningen totalt. [2] En ökad försäljning av elbilar och även av produkterför energilagring, ökar efterfrågan på litiumjonbatterier. Den här undersökningen har tagits fram i samarbete med Northvolt som är en av nykomlingarna inomtillverkningen av litiumjonbatterier i Europa. Northvolt är ett svenskt bolag som startades 2016 och trotsdess tidiga fas, har de lyckats samverka med prominenta samarbetspartners som BMW group, Epiroc, Scania och Volkswagen group. Northvolts ambition är att skapa världens grönaste batteri med ett minimalt klimatavtryck. Denna produkt utvecklas i deras så kallade Gigafactory som ligger i Skellefteå och vars årliga produktion uppnår 32 Gwh. Utöver det har Northvolt i samarbete med Volkswagen fått i uppdrag att bygga upp en batterifabrik i Tyskland, vars tillverkningskapacitet kommer att uppnå till 16Gwh årligen. Efter att ha ingått i flera leverantörsavtal har Northvolt sålt en avsevärd mängd av sin produktionskapacitet för den planerade fabriken Gigafactory NV Ett till sina nyckelkunder. Detta motsvarar en investering på 13 miljarder dollar fram till 2030. [3]Att etablera en fabrik som tillverkar litiumjonbatterier för bilindustrin är en utmanande uppgift. Det kräversnabba beslut och flexibilitet för att hålla jämna steg med den växande efterfrågan på batterier av denna typ. Batterierna ska hålla måttet för de krav som kunderna har, och även ska de uppfylla alla internationella standarder för ett miljövänligt batteri.För att kunna upprätthålla den växande efterfrågan och kundkraven utvecklas nya metoder inom projektledning för att effektivisera produktionen. Det allra senaste praxis i projektledning, produktion och produkttillverkning inom bilindustrin analyseras. Dessutom beaktas senaste metoderna och praxis från andra industrier. Vidare kartläggs northvolts nuvarande strategi för deras hantering av produktionsfasen för att föreslå förbättringar och verktyg, som kan effektivisera uppbyggnaden och driften av framtida fabriker. Huvudsyftet med denna avhandling är att utveckla nya metoder inom projektledning för att kunnautveckla produktionsfasen för framtida fabriker som tillverkar litiumjonbatterier. Detta kommer leda tillatt Northvolt kommer vara en del av våra framtida liv genom att hjälpa oss att driva våra fordon, värma våra hem och driva våra fabriker på ett hållbart och effektivt sätt. Det förväntade resultatet i denna avhandling är fem utvecklade verktyg som stödjer utbyggnaden av Litiumjonbatteri fabriker i Europa föratt öka dess totala årliga produktion.
Mukka, Manoj Kumar. „Simulink® Based Design and Implementation of a Solar Power Based Mobile Charger“. Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc849640/.
Der volle Inhalt der QuellePalapati, Naveen kumar reddy, und Naveen kumar reddy Palapati. „Diagnostics and Degradation Investigations of Li-Ion Battery Electrodes using Single Nanowire Electrochemical Cells“. VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4475.
Der volle Inhalt der QuelleWillgård, Carl. „Cylindriska litiumjonbatterier – koncept för kommersiella fordon“. Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231521.
Der volle Inhalt der QuelleIn the process of optimizing and electrifying vehicles using batteries, lithium-ion battery cells have been introduced to the vehicles. The most common way is that the manufacturer installs a large battery cell (> 10 Ah) in the vehicles. A large cell has many advantages to a small cell. For example it is easier to handle, the equipment required to monitor the cell becomes smaller and no connections between multiple cells are required. On the other hand, there are many advantages of having smaller cells (<5 Ah). The smaller cells could contribute to a lower cost, a more even heat distribution across the system and, above all, easier to mechanically install in the vehicle. The most common choice for companies is to use the larger cells, but there are few examples in the private vehicle sector where manufacturers use the smaller cells. Using the smaller cells requires a different idea when it comes to cooling the cells, packing in the vehicles, and monitoring the hardware and software of the cells are different. This project focused on the electrical and thermal aspects of implementing parallel-connected small lithium-ion cells in heavy vehicles, such as buses and lorries. In this project performance tests were performed where temperature, voltage and current are monitored across the cells. The aim was to increase knowledge in the area of these small cells, to see if they have a potential place in the commercial market in the future. The goal of this project was to measure the spread of current that occurs between the parallel-connected cells during the varying temperature between the cells. From the experiments carried out, it was clear that there’s a spread of the current between the cells. The temperature difference tested during the experiment does not affect the spread of the current enough to show any difference in the current spread between the cells. Which leads to the conclusion of the project that there are a current spread between parallelconnected cells. However, the temperature difference of ten degrees Celsius is not sufficient to affect the cells enough that the spread becomes larger. The project faced a lot of challenges and difficulties. This has meant that the time spent on the experimental phase became very short. Therefore, a minimal amount of experiments was completed, which in turn means that the data collected for the project is not as extensive as it was meant to be initially.
Liu, Cheng. „In situ infrared study on interfacial electrochemistry in energy storage devices“. University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1598305190634383.
Der volle Inhalt der QuelleMuneeb, Ur Rehman Muhammad. „Modular, Scalable Battery Systems with Integrated Cell Balancing and DC Bus Power Processing“. DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/6999.
Der volle Inhalt der QuelleMacaraig, Lea Cristina De Jesus. „Studies on Surface Modified Metal Oxides Nanofibers and Thin Films for Solar Energy Conversion and Storage“. Kyoto University, 2013. http://hdl.handle.net/2433/180445.
Der volle Inhalt der QuelleAli, Haider Adel Ali, und Ziad Namir Abdeljawad. „THERMAL MANAGEMENT TECHNOLOGIES OF LITHIUM-ION BATTERIES APPLIED FOR STATIONARY ENERGY STORAGE SYSTEMS : Investigation on the thermal behavior of Lithium-ion batteries“. Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-48904.
Der volle Inhalt der QuelleMALTSEV, TIMOFEY. „Thermal behaviour of Li-ion cell : Master Thesis project at Volvo GTT ATR“. Thesis, KTH, Maskinkonstruktion (Inst.), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-142488.
Der volle Inhalt der QuelleMaster thesis work was done at Volvo Group Trucks Technology. Aim of the project was tostudy thermal behaviour of Li-ion battery for hybrid and electric vehicles, HEVs and EVs.Battery cells were tested in regular working conditions and abuse conditions. Surfacetemperature of cells was chosen for studying heat evolution.A literature study was conducted to research factors that influence cell temperature. Analysis ofsources of these factors was then performed. A modelling method for analyzing cell thermalefficiency was designed. Sustainability and economics aspects of batteries were also studied.When factors were established three tests were designed to study their effects. Five cells werestudied. Tests mainly examined external factors such as charge and discharge, pulse andcontinuous current, ambient temperature to name a few. An infrared camera was used.Study showed how different factors influenced cell temperature. Further analysis of sourcespointed out some hot spots of cell designs.Thermal abuse test were performed on three pairs of cells. Cells were heated up to 300°C andwent through thermal runaway which in some cases increased temperatures up to 660°C in lessthan a second and caused fire. Different cell chemistries and cell designs reacted differently tothe abuse conditions.A conclusion was reached that cells performed differently in similar test conditions. Whendesigning a battery system a set of specifications for usage conditions is crucial for choosing acell. When conditions and load cycles are known cells can be tested and their thermal andelectrical efficiency evaluated.Thermal Management System TMS can largely enhance cell efficiency and lifecycle. Suchsystem must also be designed according to usage conditions and particular cell’s performance.Battery safety showed to be a very important factor of designing a battery system. Humans shallnot be injured by systems with batteries which must be kept in mind during design.Work resulted in summary of important factors and specifications for designing a battery systembased on cell thermal behaviour. These guidelines are presented in Appendix 5.
Patranika, Tamara. „Investigations of the Thermal Runaway Process of a Fluorine-Free Electrolyte Li-Ion Battery Cell“. Thesis, KTH, Kemiteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298355.
Der volle Inhalt der QuelleThis project aims to investigate the thermal runaway process of fluorine-free lithium ion battery cells and to compare this with a commercially used fluorinated electrolyte. The cells consisted of a silicon-graphite composite anode and a LiNi0.6Mn0.2Co0.2O2(NMC622) cathode. The non-fluorinated electrolyte used was based on lithiumbis(oxalato)borate (LiBOB) in organic solvents with the additive vinylene carbonate(VC). Moreover, the fluorinated electrolyte consisted of LiPF6 in the same organic solvents together with VC and fluoroethylene carbonate (FEC). The thermal stability measurements have included Accelerating Rate Calorimetry (ARC) and Differential Scanning Calorimetry (DSC). Moreover, both coin cells and pouch cells have been examined by ARC. However, thermal runaway could not be detected for either type of cells, concluding that a greater amount of active material was needed. In order to measure the thermal reactions of the battery components, DSC was used. These results concluded that the anode was more thermally stable with a non-fluorinated electrolyte. However, the thermal stability appeared to be lower for the cathode, therefore, further investigation is needed for confirmation of the cathode.
Feng, Chenrun. „Physical and electrochemical investigation of various dinitrile plasticizers in highly conductive polymer electrolyte membranes for lithium ion battery application“. University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1495737492563488.
Der volle Inhalt der QuelleMellgren, Niklas. „Validated Modelling of Electrochemical Energy Storage Devices“. Licentiate thesis, KTH, Mechanics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11052.
Der volle Inhalt der QuelleThis thesis aims at formulating and validating models for electrochemical energy storage devices. More specifically, the devices under consideration are lithium ion batteries and polymer electrolyte fuel cells.
A model is formulated to describe an experimental cell setup consisting of a LixNi0.8Co0.15Al0.05O2 composite porous electrode with three porous separators and a reference electrode between a current collector and a pure Li planar electrode. The purpose of the study being the identification of possible degradation mechanisms in the cell, the model contains contact resistances between the electronic conductor and the intercalation particles of the porous electrode and between the current collector and the porous electrode. On the basis of this model formulation, an analytical solution is derived for the impedances between each pair of electrodes in the cell. The impedance formulation is used to analyse experimental data obtained for fresh and aged LixNi0.8Co0.15Al0.05O2 composite porous electrodes. Ageing scenarios are formulated based on experimental observations and related published electrochemical and material characterisation studies. A hybrid genetic optimisation technique is used to simultaneously fit the model to the impedance spectra of the fresh, and subsequently also to the aged, electrode at three states of charge. The parameter fitting results in good representations of the experimental impedance spectra by the fitted ones, with the fitted parameter values comparing well to literature values and supporting the assumed ageing scenario.
Furthermore, a steady state model for a polymer electrolyte fuel cell is studied under idealised conditions. The cell is assumed to be fed with reactant gases at sufficiently high stoichiometric rates to ensure uniform conditions everywhere in the flow fields such that only the physical phenomena in the porous backings, the porous electrodes and the polymer electrolyte membrane need to be considered. Emphasis is put on how spatially resolved porous electrodes and nonequilibrium water transport across the interface between the gas phase and the ionic conductor affect the model results for the performance of the cell. The future use of the model in higher dimensions and necessary steps towards its validation are briefly discussed.
Geder, Jan [Verfasser], Andreas [Akademischer Betreuer] Jossen, Andreas [Gutachter] Jossen und Jürgen [Gutachter] Garche. „Role of active material composition and microstructure in lithium-ion battery cell safety / Jan Geder ; Gutachter: Andreas Jossen, Jürgen Garche ; Betreuer: Andreas Jossen“. München : Universitätsbibliothek der TU München, 2021. http://d-nb.info/123781586X/34.
Der volle Inhalt der QuelleMostafaee, Mani. „Six Sigma for quality assurance of Lithium-ion batteries in the cell assembly process : A DMAIC field study at Northvolt“. Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik, konst och samhälle, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85966.
Der volle Inhalt der QuelleBrist på teknisk renhet och partikelföroreningar vid tillverkning av litiumjonbatterier påverkar dess prestanda och utgör en risk för produktens säkerhet och kvalitet. Därför sker en del av tillverkningsprocessen i ett Clean & Dry rum för att upprätthålla teknisk renhet. Denna uppsats syftar till att ge ett ramverk för att kontrollera partikelföroreningar och därmed stärka produktens kvalitet och säkerhet. För att uppnå syftet genomfördes först en litteraturstudie vilket vidare kompletterades med en fältstudie vid Northvolt Labs i Västerås. Studien bidrar till befintliga teorier genom att tillhandahålla ett ramverk för att hitta och åtgärda rotorsaker till partikelkontaminering i tillverkningsprocessen baserat på befintlig litteratur och standarder. Sex Sigma problemlösningsmetoden DMAIC implementerades för att genomföra fältstudien. En riskbedömning genomfördes för att hitta riskfyllda aktiviteter i processen. Vidare implementerades mätmetoder från relevanta standarder för att mäta kontamineringsnivån. Resultaten indikerar stor risk för tekniskrenhet från saneringsmetoder, material, maskiner och miljön. Vidare rekommenderas flera åtgärder för att underhålla tekniskrenhet vilka förväntas minska avvikelser i processen.
Birkholz, Oleg [Verfasser], und M. [Akademischer Betreuer] Kamlah. „Modeling transport properties and electrochemical performance of hierarchically structured lithium-ion battery cathodes using resistor networks and mathematical half-cell models / Oleg Birkholz ; Betreuer: M. Kamlah“. Karlsruhe : KIT-Bibliothek, 2021. http://d-nb.info/123814814X/34.
Der volle Inhalt der QuelleCordoba, Arenas Andrea Carolina. „Aging Propagation Modeling and State-of-Health Assessment in Advanced Battery Systems“. The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385967836.
Der volle Inhalt der QuelleLeclere, Mélody. „Synthèse de (poly)électrolytes pour accumulateur Li-ion à haute densité d'énergie“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI001/document.
Der volle Inhalt der QuelleThe thesis work presented in this manuscript focuses on the development of new electrolytes without the use of flammable conventional solvents to improve the security problem batteries. The first part of this work is the preparation of gelled electrolytes from phosphonium ionic liquid. A study is performed on the compatibility between the electrolyte and the polymer host epoxy / amine as well as the influence of the polymerization LI on the network. The thermal properties, and ionic transport viscoelastic gels are discussed. Among the obtained gelled electrolyte, the gel containing the electrolyte (1 M LiTFSI + LI [P66614] [TFSI]) showed interesting electrochemical properties. A gelled system Li | LFP has been implemented and good cycling stability at 100 ° C was obtained. The second part of this work is the development of new liquid crystal electrolytes promotes transport of lithium ions with hopping mechanism. An anionic compound was synthesized from reaction of an epoxy / amine from lithium 4-amino-1-naphthalenesulfonate and an aliphatic diglycidyl ether. Various characterization technical were used to establish a link structure / properties. The results allowed to show a lamellar supramolecular organization to obtain lithium ion conduction channels. The ion transport measurement helped to highlight a transport of lithium ions following an Arrhenius law (independent of the molecular backbone) which is evidence of a transport mechanism of lithium ions with hopping mechanism. The first electrochemical tests showed good stability of these electrolytes with lithium electrode and a reversible lithium ion transport in a symmetrical cell Li | Li. Following this work, the prospects are discussed to improve the performance of these electrolytes