Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lithium-ion battery cells“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lithium-ion battery cells" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lithium-ion battery cells"
Liu, Hong Rui, und Chao Ying Xia. „An Active Equalizer for Serially Connected Lithium-Ion Battery Cells“. Advanced Materials Research 732-733 (August 2013): 809–12. http://dx.doi.org/10.4028/www.scientific.net/amr.732-733.809.
Der volle Inhalt der QuelleMadani, Seyed Saeed, Erik Schaltz und Søren Knudsen Kær. „Applying Different Configurations for the Thermal Management of a Lithium Titanate Oxide Battery Pack“. Electrochem 2, Nr. 1 (23.01.2021): 50–63. http://dx.doi.org/10.3390/electrochem2010005.
Der volle Inhalt der QuelleMadani, Seyed Saeed. „Characterization Investigation of Lithium-Ion Battery Cells“. ECS Transactions 99, Nr. 1 (12.12.2020): 65–73. http://dx.doi.org/10.1149/09901.0065ecst.
Der volle Inhalt der QuelleBuga, Mihaela, Alexandru Rizoiu, Constantin Bubulinca, Silviu Badea, Mihai Balan, Alexandru Ciocan und Alin Chitu. „Study of LiFePO4 Electrode Morphology for Li-Ion Battery Performance“. Revista de Chimie 69, Nr. 3 (15.04.2018): 549–52. http://dx.doi.org/10.37358/rc.18.3.6146.
Der volle Inhalt der QuelleKurfer, Jakob. „Design of Assembly Systems for Large-Scale Battery Cells“. Advanced Materials Research 769 (September 2013): 11–18. http://dx.doi.org/10.4028/www.scientific.net/amr.769.11.
Der volle Inhalt der QuelleWang, Lizhi, Yusheng Sun, Xiaohong Wang, Zhuo Wang und Xuejiao Zhao. „Reliability Modeling Method for Lithium-ion Battery Packs Considering the Dependency of Cell Degradations Based on a Regression Model and Copulas“. Materials 12, Nr. 7 (30.03.2019): 1054. http://dx.doi.org/10.3390/ma12071054.
Der volle Inhalt der QuelleWu, Yi, Youren Wang, Winco K. C. Yung und Michael Pecht. „Ultrasonic Health Monitoring of Lithium-Ion Batteries“. Electronics 8, Nr. 7 (03.07.2019): 751. http://dx.doi.org/10.3390/electronics8070751.
Der volle Inhalt der QuelleStuart, Thomas A., und Wei Zhu. „Modularized battery management for large lithium ion cells“. Journal of Power Sources 196, Nr. 1 (Januar 2011): 458–64. http://dx.doi.org/10.1016/j.jpowsour.2010.04.055.
Der volle Inhalt der QuelleDuraisamy, Thiruvonasundari, und Kaliyaperumal Deepa. „Evaluation and Comparative Study of Cell Balancing Methods for Lithium-Ion Batteries Used in Electric Vehicles“. International Journal of Renewable Energy Development 10, Nr. 3 (10.02.2021): 471–79. http://dx.doi.org/10.14710/ijred.2021.34484.
Der volle Inhalt der QuelleDuraisamy, Thiruvonasundari, und Kaliyaperumal Deepa. „Evaluation and Comparative Study of Cell Balancing Methods for Lithium-Ion Batteries Used in Electric Vehicles“. International Journal of Renewable Energy Development 10, Nr. 3 (10.02.2021): 471–79. http://dx.doi.org/10.14710/ijred.0.34484.
Der volle Inhalt der QuelleDissertationen zum Thema "Lithium-ion battery cells"
Zhao, Mingchuan. „Electrochemical Studies of Lithium-Ion Battery Anode Materials in Lithium-Ion Battery Electrolytes“. Ohio University / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1004388277.
Der volle Inhalt der QuelleBest, Adam Samuel 1976. „Lithium-ion conducting electrolytes for use in lithium battery applications“. Monash University, School of Physics and Materials Engineering, 2001. http://arrow.monash.edu.au/hdl/1959.1/9240.
Der volle Inhalt der QuelleChoi, Seungdon. „Soft chemistry synthesis and structure-property relationships of lithium-ion battery cathodes“. Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3025204.
Der volle Inhalt der QuelleAnnavajjula, Vamsi Krishna. „A FAILURE ACCOMMODATING BATTERY MANAGEMENT SYSTEM WITH INDIVIDUAL CELL EQUALIZERS AND STATE OF CHARGE OBSERVERS“. University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1190318540.
Der volle Inhalt der QuelleZhu, Wei. „A Smart Battery Management System for Large Format Lithium Ion Cells“. University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1301687506.
Der volle Inhalt der QuelleLimoge, Damas Wilks. „Reduced-order modeling and adaptive observer design for lithium-ion battery cells“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111722.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 167-171).
This thesis discusses the design of a control-oriented modeling approach to Lithium- Ion battery modeling, as well as the application of adaptive observers to this structure. It begins by describing the fundamental problem statement of a battery management system (BMS), and why this is challenging to solve. It continues by describing, in brief, several different modeling techniques and their use cases, then fully expounds two separate high fidelity models. The first model, the ANCF, was initiated in previous work, and has been updated with novel features, such as dynamic diffusion coefficients. The second model, the ANCF II, was developed for this thesis and updates the previous model to better solve the problems facing the construction of an adaptive observer, while maintaining its model accuracy. The results of these models are presented as well. After establishing a model with the desired accuracy and complexity, foundational observers are designed to estimate the states and parameters of the time-varying ionic concentrations in the solid electrode and electrolyte, as well as an a-priori estimate of the molar flux. For the solid electrode, it is shown that a regressor matrix can be constructed for the observer using both spatial and temporal filters, limiting the amount of additional computation required for this purpose. For the molar flux estimate, it is shown that fast convergence is possible with coefficients pertaining to measurable inputs and outputs, and filters thereof. Finally, for the electrolyte observer, a novel structure is established to restrict learning only along unknown degrees of freedom of the model system, using a Jacobian steepest descent approach. Following the results of these observers, an outline is sketched for the application of a machine learning algorithm to estimate the nonlinear effects of cell dynamics.
by Damas Wilks Limoge.
S.M.
Abaza, Ahmed. „Safety of automotive lithium-ion battery cells under abusive conditions : innovation report“. Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/105583/.
Der volle Inhalt der QuelleStephenson, David E. „Modeling of Electronic and Ionic Transport Resistances Within Lithium-Ion Battery Cathodes“. Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2437.pdf.
Der volle Inhalt der QuelleChahwan, John A. „Vanadium-redox flow and lithium-ion battery modelling and performance in wind energy applications“. Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100223.
Der volle Inhalt der QuelleRoselli, Eric (Eric J. ). „Design of a testing device for quasi-confined compression of lithium-ion battery cells“. Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68922.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 29).
The Impact and Crashworthiness Laboratory at MIT has formed a battery consortium to promote research concerning the crash characteristics of new lithium-ion battery technologies as used in automotive applications. Within a broad range of tests, there was a need to perform compression tests with a variable amount of confinement. A spring-loaded detainment device was designed which allows the battery to be confined in the axis perpendicular to compression without completely rigid walls. This provides a testing environment far more similar to the conditions of a real world crash situation. During an automobile crash event, the battery pack acts as a unit where each individual cell may experience a range of stresses from nearby cells or pack walls. An appropriate device was designed in Solidworks and used in the MIT ICL for testing with adjustable confinement during compression testing. MIT's research as a part of the consortium will continue for 3 more years beyond these initial tests. Never the less, the coming computational and constitutive models will be built using initial individual cell testing. Any model of a complete battery pack will use the material properties derived from cell testing.
by Eric Roselli.
S.B.
Bücher zum Thema "Lithium-ion battery cells"
Battery management systems for large lithium-ion battery packs. Boston: Artech House, 2010.
Den vollen Inhalt der Quelle findenArora, Ashish, und Sneha Arun Lele. Lithium-Ion Battery Failures in Consumer Electronics. Artech House, 2019.
Den vollen Inhalt der Quelle findenHandbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology. Elsevier Science & Technology Books, 2015.
Den vollen Inhalt der Quelle findenPistoia, Gianfranco, und Boryann Liaw. Behaviour of Lithium-Ion Batteries in Electric Vehicles: Battery Health, Performance, Safety, and Cost. Springer, 2019.
Den vollen Inhalt der Quelle findenPistoia, Gianfranco, und Boryann Liaw. Behaviour of Lithium-Ion Batteries in Electric Vehicles: Battery Health, Performance, Safety, and Cost. Springer, 2018.
Den vollen Inhalt der Quelle findenGulbinska, Malgorzata K. Lithium-ion Battery Materials and Engineering: Current Topics and Problems from the Manufacturing Perspective. Springer, 2014.
Den vollen Inhalt der Quelle findenGulbinska, Malgorzata K. Lithium-ion Battery Materials and Engineering: Current Topics and Problems from the Manufacturing Perspective. Springer, 2016.
Den vollen Inhalt der Quelle findenGulbinska, Malgorzata K. Lithium-ion Battery Materials and Engineering: Current Topics and Problems from the Manufacturing Perspective. Springer, 2014.
Den vollen Inhalt der Quelle findenLeVine, Steve. The powerhouse: America, China, and the great battery war. 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Lithium-ion battery cells"
Santee, Stuart G., Boris Ravdel, Malgorzata K. Gulbinska, Joseph S. Gnanaraj und Joseph F. DiCarlo. „Optimizing Electrodes for Lithium-ion Cells“. In Lithium-ion Battery Materials and Engineering, 63–88. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6548-4_3.
Der volle Inhalt der QuelleGulbinska, Malgorzata K., Arthur Dobley, Joseph S. Gnanaraj und Frank J. Puglia. „Lithium-ion Cells in Hybrid Systems“. In Lithium-ion Battery Materials and Engineering, 151–73. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6548-4_6.
Der volle Inhalt der QuelleMoore, Gregory J., Frank J. Puglia und Malgorzata K. Gulbinska. „Lithium-ion Cells for High-End Applications“. In Lithium-ion Battery Materials and Engineering, 89–113. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6548-4_4.
Der volle Inhalt der QuelleWu, Ming-Hsiu, Chih-Ao Liao, Ngoc Thanh Thuy Tran und Wen-Dung Hsu. „Electrolytes for High-Voltage Lithium-Ion Battery“. In Lithium-Ion Batteries and Solar Cells, 103–15. First edition. | Boca Raton, FL : CRC Press/ Taylor & Francis Group, LLC, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003138327-6.
Der volle Inhalt der QuelleHien Nguyen, Thi Dieu, Hai Duong Pham, Shih-Yang Lin, Ngoc Thanh Thuy Tran und Ming-Fa Lin. „Fundamental Properties of Li+-Based Battery Anode“. In Lithium-Ion Batteries and Solar Cells, 59–77. First edition. | Boca Raton, FL : CRC Press/ Taylor & Francis Group, LLC, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003138327-4.
Der volle Inhalt der QuelleLin, Shih-Yang, Hsin-Yi Liu, Sing-Jyun Tsai und Ming-Fa Lin. „Geometric and Electronic Properties of Li+-Based Battery Cathode“. In Lithium-Ion Batteries and Solar Cells, 117–47. First edition. | Boca Raton, FL : CRC Press/ Taylor & Francis Group, LLC, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003138327-7.
Der volle Inhalt der QuelleBrahma, Sanjaya, Alex Chinghuan Lee und Jow-Lay Huang. „Graphene as an Anode Material in Lithium-Ion Battery“. In Lithium-Ion Batteries and Solar Cells, 149–66. First edition. | Boca Raton, FL : CRC Press/ Taylor & Francis Group, LLC, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003138327-8.
Der volle Inhalt der QuelleSasso, Marco, Golam Newaz, Marco Rossi, Attilio Lattanzi und Sanket Mundhe. „Analysis of Deformations in Crush Tests of Lithium Ion Battery Cells“. In Residual Stress, Thermomechanics & Infrared Imaging and Inverse Problems, Volume 6, 123–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30098-2_19.
Der volle Inhalt der QuelleFeinauer, Julian, Daniel Westhoff, Klaus Kuchler und Volker Schmidt. „3D Microstructure Modeling and Simulation of Materials in Lithium-ion Battery Cells“. In Communications in Computer and Information Science, 128–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96271-9_8.
Der volle Inhalt der QuelleMueller, Karsten, Daniel Tittel, Lars Graube, Zecheng Sun und Feng Luo. „Optimizing BMS Operating Strategy Based on Precise SOH Determination of Lithium Ion Battery Cells“. In Lecture Notes in Electrical Engineering, 807–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33741-3_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lithium-ion battery cells"
He, Liang, Eugene Kim und Kang G. Shin. „✲-Aware Charging of Lithium-Ion Battery Cells“. In 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS). IEEE, 2016. http://dx.doi.org/10.1109/iccps.2016.7479067.
Der volle Inhalt der QuelleSafi, Jariullah, Joel Anstrom, Sean Brennan und Hosam K. Fathy. „Differential Diagnostics for Lithium Ion Battery Cells Connected in Series“. In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6274.
Der volle Inhalt der QuelleZimmerman, Albert. „Self-Discharge Losses in Lithium Ion Battery Cells“. In 1st International Energy Conversion Engineering Conference (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-5985.
Der volle Inhalt der QuelleLee, S. Shawn, Tae H. Kim, S. Jack Hu, Wayne W. Cai und Jeffrey A. Abell. „Joining Technologies for Automotive Lithium-Ion Battery Manufacturing: A Review“. In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34168.
Der volle Inhalt der QuelleVaidyanathan, H., und G. Rao. „Electrical and thermal characteristics of lithium-ion cells“. In Fourteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference (Cat. No.99TH8371). IEEE, 1999. http://dx.doi.org/10.1109/bcaa.1999.795970.
Der volle Inhalt der QuelleHoque, M. M., M. A. Hannan und A. Mohamed. „Voltage equalization for series connected lithium-ion battery cells“. In 2015 IEEE 3rd International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA). IEEE, 2015. http://dx.doi.org/10.1109/icsima.2015.7559015.
Der volle Inhalt der QuelleYurkovich, Benjamin J., und Yann Guezennec. „Lithium Ion Dynamic Battery Pack Model and Simulation for Automotive Applications“. In ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2613.
Der volle Inhalt der QuelleAljunid, Nur Adilah, Michelle A. K. Denlinger und Hosam K. Fathy. „Self-Balancing by Design in Hybrid Electrochemical Battery Packs“. In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9106.
Der volle Inhalt der QuelleFrancis, Alex, Ilya Avdeev, Calvin Berceau, Hugo Pires Lage Martins, Luke Steinbach, Justin Mursch und Vincent Kanack. „Phantom Battery Pack for Destructive Testing of Li-Ion Batteries“. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67881.
Der volle Inhalt der QuelleLeBel, F. A., S. Wilke, B. Schweitzer, M. A. Roux, S. Al-Hallaj und J. P. F. Trovao. „A Lithium-Ion Battery Electro-Thermal Model of Parallellized Cells“. In 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall). IEEE, 2016. http://dx.doi.org/10.1109/vtcfall.2016.7880858.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Lithium-ion battery cells"
Santhanagopalan, Shriram, Chuanbo Yang und Ahmad Pesaran. Modeling Lithium Ion Battery Safety: Venting of Pouch Cells; NREL (National Renewable Energy Laboratory). Office of Scientific and Technical Information (OSTI), Juli 2013. http://dx.doi.org/10.2172/1214951.
Der volle Inhalt der QuelleTrembacki, Bradley L., Jayathi Y. Murthy und Scott Alan Roberts. Fully Coupled Simulation of Lithium Ion Battery Cell Performance. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1221525.
Der volle Inhalt der Quelle