Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „LISA space mission“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "LISA space mission" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "LISA space mission"
McNAMARA, PAUL W. „THE LISA PATHFINDER MISSION“. International Journal of Modern Physics D 22, Nr. 01 (Januar 2013): 1341001. http://dx.doi.org/10.1142/s0218271813410010.
Der volle Inhalt der QuelleSchuldt, Thilo, Klaus Döringshoff, Markus Oswald, Evgeny V. Kovalchuk, Achim Peters und Claus Braxmaier. „Absolute laser frequency stabilization for LISA“. International Journal of Modern Physics D 28, Nr. 12 (September 2019): 1845002. http://dx.doi.org/10.1142/s0218271818450025.
Der volle Inhalt der QuelleHechler, F., und W. M. Folkner. „Mission analysis for the Laser Interferometer Space Antenna (LISA) mission“. Advances in Space Research 32, Nr. 7 (Oktober 2003): 1277–82. http://dx.doi.org/10.1016/s0273-1177(03)90332-2.
Der volle Inhalt der QuelleRacca, Giuseppe D., und Paul W. McNamara. „The LISA Pathfinder Mission“. Space Science Reviews 151, Nr. 1-3 (15.12.2009): 159–81. http://dx.doi.org/10.1007/s11214-009-9602-x.
Der volle Inhalt der QuelleBanks, Michael. „Europe gives green light to LISA gravitational-wave mission“. Physics World 37, Nr. 3 (01.03.2024): 13i. http://dx.doi.org/10.1088/2058-7058/37/03/16.
Der volle Inhalt der QuelleRÜEDIGER, ALBRECHT. „Detecting gravitational waves with ground and space interferometers – with special attention to the space project ASTROD“. International Journal of Modern Physics D 11, Nr. 07 (August 2002): 963–94. http://dx.doi.org/10.1142/s0218271802002505.
Der volle Inhalt der QuelleMartens, Waldemar, und Eric Joffre. „Trajectory Design for the ESA LISA Mission“. Journal of the Astronautical Sciences 68, Nr. 2 (Juni 2021): 402–43. http://dx.doi.org/10.1007/s40295-021-00263-2.
Der volle Inhalt der QuelleDei Tos, Diogene A., Mirco Rasotto, Florian Renk und Francesco Topputo. „LISA Pathfinder mission extension: A feasibility analysis“. Advances in Space Research 63, Nr. 12 (Juni 2019): 3863–83. http://dx.doi.org/10.1016/j.asr.2019.02.035.
Der volle Inhalt der QuelleSmetana, Adam. „Background for gravitational wave signal at LISA from refractive index of solar wind plasma“. Monthly Notices of the Royal Astronomical Society: Letters 499, Nr. 1 (16.09.2020): L77—L81. http://dx.doi.org/10.1093/mnrasl/slaa155.
Der volle Inhalt der QuelleEscudero Sanz, Isabel, Astrid Heske und Jeffrey C. Livas. „A telescope for LISA – the Laser Interferometer Space Antenna“. Advanced Optical Technologies 7, Nr. 6 (19.12.2018): 395–400. http://dx.doi.org/10.1515/aot-2018-0044.
Der volle Inhalt der QuelleDissertationen zum Thema "LISA space mission"
Bogenstahl, Johanna. „Interferometry for the space mission LISA Pathfinder“. Thesis, University of Glasgow, 2010. http://theses.gla.ac.uk/1696/.
Der volle Inhalt der QuelleVIDANO, SIMONE. „Drag-free control design for the LISA space mission“. Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2957738.
Der volle Inhalt der QuelleRivas, García Francisco. „Thermo-optical and thermo-elastic effects onboard the LISA Pathfinder mission“. Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669444.
Der volle Inhalt der QuelleRoubeau-Tissot, Amaël. „Interférométrie à dérive de fréquence pour la mesure de la lumière parasite sur l'instrument spatial LISA“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5036.
Der volle Inhalt der QuelleLISA (Laser Interferometer Space Antenna) is a space interferometer dedicated to the detection of gravitational waves in the frequency range [20 µHz-1 Hz], currently under development (phase B). This international project, managed by ESA, will comprise a constellation of three satellites in a triangular formation, each emitting two laser beams towards the other two. There are therefore a total of 6 laser links, and 6 units, called MOSA (Moving Optical Sub-Assembly) responsible for transmitting and receiving the beams, and for measuring inter-satellite distance variations. Each MOSA contains three heterodyne interferometers, and as with any optical device, stray light can compromise measurement accuracy, resolution and dynamics. It is therefore necessary to develop an instrumentation (called the SL-OGSE, Stray Light-Optical Ground Support Equipment) capable of detecting and identifying the contributions of coherent stray light interfering with the device's nominal beams. It will have to meet two requirements in particular: determine the optical path length of the stray light with a resolution better than 2 mm, giving an accuracy of 1 mm on the position of the faulty component, and achieve a measurement floor in fractional optical amplitude of 1,1.10-6 (or 2,2.10-6 in electrical fractional amplitude) in the range of optical paths to be covered.The chosen method is frequency-drift interferometry (FMCW, Frequency Modulated Continuous Wave) by injecting a frequency-swept laser beam into the system under test. The outgoing optical and electrical signals are captured during the optical frequency sweep, and any modulation of these signals will be attributed to the existence of a stray light amplitude, which interferes with the nominal light amplitude. The optical path difference (OPD) between stray and nominal light is deduced from the frequency of these interference fringes. It is by exploiting the OPD value that we can identify the path followed by the stray light, and trace it back to the offending component.The aim of this thesis is to develop a prototype of this instrumentation, comprising a laser diode that can be scanned over 2 nm (to achieve the desired OPD resolution), a laser phase-locked loop, a precise frequency ramp measurement, a real-time ramp calibrator and a data acquisition and processing system.This prototype, tested first on a simplified set-up where we control the presence of stray light, then on a complex system close to the MOSA, has enabled various verifications. The method works for the detection of any type of stray light (stray beam or scattered light type), effectively resolving the contributions from the two sides of a 1mm glass plate and achieving a detection floor below 10-6 in fractional optical amplitude (below 10-12 in fractionnal optical power) in a range of OPD values from 15 mm to over 10 m, covering typical stray light paths in the MOSA. The prototype was finally used to measure stray light in an interferometric demonstrator whose complexity is close to that of a MOSA. This test enabled us to identify certain disturbances, such as changes in the polarization of the injected beam due to the frequency scanning, or imperfections in the frequency scanning, which affect the optical signals recorded. Strategies are proposed to reduce these disturbances, or to take them into account when processing the recorded signals
Bücher zum Thema "LISA space mission"
A Good Night For Ghosts A Merlin Mission. Random House Books for Young Readers, 2009.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "LISA space mission"
Mee, Nicholas. „Lovely LISA“. In The Cosmic Mystery Tour, 33–38. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198831860.003.0005.
Der volle Inhalt der QuelleWestwood, Lisa, Beth Laura O’Leary und Milford Wayne Donaldson. „Legal Frameworks for Historic Preservation“. In The Final Mission. University Press of Florida, 2017. http://dx.doi.org/10.5744/florida/9780813062464.003.0007.
Der volle Inhalt der QuelleCarr, Michael H. „Future Mars Exploration“. In Water On Mars, 184–96. Oxford University PressNew York, NY, 1996. http://dx.doi.org/10.1093/oso/9780195099386.003.0009.
Der volle Inhalt der QuelleBoswell, Matthew, und Antony Rowland. „Witness in the Light Stage“. In Virtual Holocaust Memory, 83—C3P74. Oxford University PressNew York, 2023. http://dx.doi.org/10.1093/oso/9780197645390.003.0004.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "LISA space mission"
Stebbins, Robin. „LISA Mission Tutorial“. In LASER INTERFEROMETER SPACE ANTENNA: 6th International LISA Symposium. AIP, 2006. http://dx.doi.org/10.1063/1.2405016.
Der volle Inhalt der QuelleFolkner LISA Team, W. M. „The LISA mission design“. In The second international laser interferometer space antenna symposium (LISA) on the detection and observation of gravitational waves in space. AIP, 1998. http://dx.doi.org/10.1063/1.57401.
Der volle Inhalt der QuellePireaux, S., B. Chauvineau, T. Régimbau und J. Y. Vinet. „Relativistic approach of the LISA mission“. In LASER INTERFEROMETER SPACE ANTENNA: 6th International LISA Symposium. AIP, 2006. http://dx.doi.org/10.1063/1.2405070.
Der volle Inhalt der QuelleOrtega-Ruiz, J. A., A. Conchillo, X. Xirgu und C. Boatella. „Mission Critical Software in LISA Pathfinder“. In LASER INTERFEROMETER SPACE ANTENNA: 6th International LISA Symposium. AIP, 2006. http://dx.doi.org/10.1063/1.2405119.
Der volle Inhalt der QuelleKarlen, L., S. Kundermann, N. Torcheboeuf, E. Portuondo-Campa, E. Obrzud, J. Bennès, F. Droz et al. „Laser System for the LISA Mission“. In Applications of Lasers for Sensing and Free Space Communications. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/lsc.2019.lm3b.2.
Der volle Inhalt der QuelleBortoluzzi, D., L. Baglivo, M. Benedetti, F. Biral, P. Bosetti, A. Cavalleri, I. Cristofolini et al. „Test-Mass Release Phase Ground Testing for the LISA Pathfinder Mission“. In LASER INTERFEROMETER SPACE ANTENNA: 6th International LISA Symposium. AIP, 2006. http://dx.doi.org/10.1063/1.2405098.
Der volle Inhalt der QuelleNappo, F., D. Desiderio, A. Franzoso, P. Lorenzi, C. Moratto, A. Moroni, P. Sarra, M. Molina, G. Borghi und M. Piermaria. „Experience and design drivers for the Inertial Sensor on the LISA Pathfinder Mission“. In LASER INTERFEROMETER SPACE ANTENNA: 6th International LISA Symposium. AIP, 2006. http://dx.doi.org/10.1063/1.2405096.
Der volle Inhalt der QuelleMontemurro, F., W. Fichter, M. Schlotterer und S. Vitale. „Control Design of the Test Mass Release Mode for the LISA Pathfinder Mission“. In LASER INTERFEROMETER SPACE ANTENNA: 6th International LISA Symposium. AIP, 2006. http://dx.doi.org/10.1063/1.2405103.
Der volle Inhalt der QuellePreston, Alix, Rachel J. Cruz, J. Ira Thorpe, Guido Mueller, G. Trask Boothe, Rodrigo Delgadillo und Sridhar R. Guntaka. „Dimensional Stability of Hexoloy SA® Silicon Carbide and Zerodur™ Materials for the LISA Mission“. In LASER INTERFEROMETER SPACE ANTENNA: 6th International LISA Symposium. AIP, 2006. http://dx.doi.org/10.1063/1.2405071.
Der volle Inhalt der QuelleStacey, Jonathan, Geoffrey P. Barwood, Alessio Spampinato, Peter Tsoulos, Conor Robinson, Paul Gaynor und Patrick Gill. „Laser frequency stabilisation for the LISA mission using a cubic cavity“. In International Conference on Space Optics — ICSO 2022, herausgegeben von Kyriaki Minoglou, Nikos Karafolas und Bruno Cugny. SPIE, 2023. http://dx.doi.org/10.1117/12.2691441.
Der volle Inhalt der Quelle