Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Liquid Xenon Compton telescope“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Liquid Xenon Compton telescope" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Liquid Xenon Compton telescope"
Oger, T., W. T. Chen, J. P. Cussonneau, J. Donnard, S. Duval, J. Lamblin, O. Lemaire et al. „A liquid xenon TPC for a medical imaging Compton telescope“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 695 (Dezember 2012): 125–28. http://dx.doi.org/10.1016/j.nima.2011.12.004.
Der volle Inhalt der QuelleChen, W. T., H. Carduner, J. P. Cussonneau, J. Donnard, S. Duval, A. F. Mohamad-Hadi, J. Lamblin et al. „Measurement of the Transverse Diffusion Coefficient of Charge in Liquid Xenon“. Defect and Diffusion Forum 326-328 (April 2012): 567–72. http://dx.doi.org/10.4028/www.scientific.net/ddf.326-328.567.
Der volle Inhalt der QuelleAprile, E., A. Curioni, K. L. Giboni, M. Kobayashi, U. G. Oberlack und S. Zhang. „Compton imaging of MeV gamma-rays with the Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT)“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 593, Nr. 3 (August 2008): 414–25. http://dx.doi.org/10.1016/j.nima.2008.05.039.
Der volle Inhalt der QuelleAprile, E., V. Egorov, K. L. Giboni, T. Kozu, F. Xu, T. Doke, J. Kikuchi et al. „The electronics read out and data acquisition system for a liquid xenon time projection chamber as a balloon-borne Compton telescope“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 412, Nr. 2-3 (August 1998): 425–36. http://dx.doi.org/10.1016/s0168-9002(98)00480-x.
Der volle Inhalt der QuelleDuval, S., A. Breskin, H. Carduner, J.-P. Cussonneau, J. Lamblin, P. Le Ray, E. Morteau, T. Oger, J.-S. Stutzmann und D. Thers. „MPGDs in Compton imaging with liquid-xenon“. Journal of Instrumentation 4, Nr. 12 (10.12.2009): P12008. http://dx.doi.org/10.1088/1748-0221/4/12/p12008.
Der volle Inhalt der QuelleAprile, E., A. Bolotnikov, D. Chen, R. Mukherjee und F. Xu. „The polarization sensitivity of the liquid xenon imaging telescope“. Astrophysical Journal Supplement Series 92 (Juni 1994): 689. http://dx.doi.org/10.1086/192042.
Der volle Inhalt der QuelleGonçalves, O. D., H. Schechter, M. I. Lopes und V. Chepel. „Rayleigh to compton differential cross-section ratios in liquid xenon“. X-Ray Spectrometry 28, Nr. 5 (September 1999): 384–87. http://dx.doi.org/10.1002/(sici)1097-4539(199909/10)28:5<384::aid-xrs369>3.0.co;2-j.
Der volle Inhalt der QuelleBuuck, M., A. Mishra, E. Charles, N. Di Lalla, O. A. Hitchcock, M. E. Monzani, N. Omodei und T. Shutt. „Low-energy Electron-track Imaging for a Liquid Argon Time-projection-chamber Telescope Concept Using Probabilistic Deep Learning“. Astrophysical Journal 942, Nr. 2 (01.01.2023): 77. http://dx.doi.org/10.3847/1538-4357/aca329.
Der volle Inhalt der QuelleGiboni, K., E. Aprile, T. Doke, S. Suzuki, L. M. P. Fernandes, J. A. M. Lopes und J. M. F. dos Santos. „Compton Positron Emission Tomography with a Liquid Xenon Time Projection Chamber“. Journal of Instrumentation 2, Nr. 10 (09.10.2007): P10001. http://dx.doi.org/10.1088/1748-0221/2/10/p10001.
Der volle Inhalt der QuelleCussonneau, J. P., J. M. Abaline, S. Acounis, N. Beaupère, J. L. Beney, J. Bert, S. Bouvier et al. „3$\gamma $ Medical Imaging with a Liquid Xenon Compton Camera and $^{44}$Sc Radionuclide“. Acta Physica Polonica B 48, Nr. 10 (2017): 1661. http://dx.doi.org/10.5506/aphyspolb.48.1661.
Der volle Inhalt der QuelleDissertationen zum Thema "Liquid Xenon Compton telescope"
Mohamad, Hadi Abdul Fattah. „Simulation de l'imagerie à 3γ avec un télescope Compton au xénon liquide“. Phd thesis, Ecole des Mines de Nantes, 2013. http://tel.archives-ouvertes.fr/tel-00847425.
Der volle Inhalt der QuelleSemenov, Evgenii. „Experimental studies and evaluation of the implementation of 3γ-imaging and the new technology of XEMIS cameras adapted to the control of MOX fuel“. Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0443.
Der volle Inhalt der QuelleThe non-destructive control and imaging with γ-rays are well-known widely used in nuclear fuel production industry and nuclear medicine, respectively. The thesis is centered on new application of a state-of-the-art detector, based on single-phase liquid xenon 24-cm long field-of-view camera, XEMIS2. It is constructed in Nantes, France. Originally conceived for small animal medical 3-gamma imaging, the camera is now being scrutinized to explore new area of its’ application in non-destructive control and imaging of high-density (> 10 g/cm3) MOX fuel pellets or rods that emit a wide spectrum of γ-rays, which is a quite relevant and ambitious goal. XEMIS2 main goal is a significant dose reduction per scan while preserving the same image quality as in conventionnal cameras. MOX fuel γ-rays emission spectrum was studied, and high activity is expected, but the useful high-energy region of interest (ROI) that was selected for this work presents a challenge due to small statistics. It was shown that other ROI used in current passive non-destructive gamma-scanning control face difficulties due to strong self-absorbtion of γ-rays. The thesis will expound on the two methods that were developed and assessed for MOX Pu/(U+Pu) ratio control, including new contributions to algorithms in Compton imaging
Oger, Tugdual. „Développement expérimental d'un télescope Compton au xenon liquide pour l'imagerie médicale fonctionnelle“. Phd thesis, Ecole des Mines de Nantes, 2012. http://tel.archives-ouvertes.fr/tel-00678767.
Der volle Inhalt der QuelleGallego, Manzano Lucia. „Optimization of a single-phase liquid xenon Compton camera for 3γ medical imaging“. Thesis, Nantes, Ecole des Mines, 2016. http://www.theses.fr/2016EMNA0276/document.
Der volle Inhalt der QuelleThe work described in this thesis is focused on the characterization and optimization of a single-phaseliquid xenon Compton camera for medical imaging applications. The detector has been conceived to exploit the advantages of an innovative medical imaging technique called 3γ imaging, which aims to obtain aprecise 3D location of a radioactive source with high sensitivity and an important reduction of the dose administered to the patient. The 3γ imaging technique is based on the detection in coincidence of 3gamma rays emitted by a specific (+β, γ) emitter radionuclide,the 44Sc. A first prototype of a liquid xenon Compton camera has been developed by Subatech laboratory within the XEMIS (Xenon Medical Imaging System) project, to proof the feasibility of the 3γ imaging technique. This new detection framework is based on an advanced cryogenic system and an ultra-low noise front-end electronics operating at liquid xenon temperature. This work has contributed to the characterization of the detector response and the optimization of the ionization signal extraction. A particular interest has been given to the influence of the Frisch grid on the measured signals. First experimental evidences of the Compton cone reconstruction using asource of ²²Na (β+, Eγ = 1.274 MeV) are also reported in this thesis, which demonstrate the proof of concept of the feasibility of the 3γ imaging. The results reported in this thesis have been essential for the development of a larger scale liquid xenon Compton camera for small animal imaging. This new detector, called XEMIS2, is now in phase of construction
Lu, Philip Fei-Tung. „Monte-Carlo simulations of positron emission tomography based on liquid xenon detectors“. Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/595.
Der volle Inhalt der QuelleBücher zum Thema "Liquid Xenon Compton telescope"
United States. National Aeronautics and Space Administration., Hrsg. A liquid xenon imaging telescope for 1-30 MeV gamma-ray astrophysics. [Washington, D.C: National Aeronautics and Space Administration, 1989.
Den vollen Inhalt der Quelle findenAprile, Elena. Development of a high resolution liquid xenon imaging telescope for medium energy gamma-ray astrophysics: Annual status report for NASA grant NAGW-2013. [Washington, DC: National Aeronautics and Space Administration, 1992.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Development of a high resolution liquid xenon imaging telescope for medium energy gamma-ray astrophysics: Annual status report for NASA grant NAGW-2013. [Washington, DC: National Aeronautics and Space Administration, 1992.
Den vollen Inhalt der Quelle findenAprile, Elena. A high resolution liquid xenon imaging telescope for 0.3-10 MEV gamma-ray astrophysics: Construction, and initial balloon flights. [Washington, DC: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenAprile, Elena. A high resolution liquid xenon imaging telescope for 0.3-10 MeV gamma-ray astrophysics: Construction and initial balloon flights : annual status report for NAGW-2013 : 1 January 1994 - 31 December 1994. Washington, DC: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Liquid Xenon Compton telescope"
Xing, Y., M. Abaline, S. Acounis, N. Beaupère, J. L. Beney, J. Bert, S. Bouvier et al. „XEMIS: Liquid Xenon Compton Camera for 3γ Imaging“. In Springer Proceedings in Physics, 154–58. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1316-5_29.
Der volle Inhalt der QuelleAprile, E., A. Bolotnikov, D. Chen, H. Tawara, F. Xu, E. Chupp, P. Dunphy et al. „The Imaging Liquid Xenon-Coded Aperture Telescope (LXe-CAT)“. In Imaging in High Energy Astronomy, 333–38. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0407-4_55.
Der volle Inhalt der QuelleZhu, Y., M. Abaline, S. Acounis, N. Beaupère, J. L. Beney, J. Bert, S. Bouvier et al. „Scintillation Signal in XEMIS2, a Liquid Xenon Compton Camera with 3γ Imaging Technique“. In Springer Proceedings in Physics, 159–63. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1316-5_30.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Liquid Xenon Compton telescope"
Lainé, Q., N. Beaupere, D. Cai, C. Lahuec, E. Morteau, F. Seguin und D. Thers. „Multi Time-Over-Threshold System for Light Signal in a Liquid Xenon 3-Photon Compton Camera“. In 2024 IEEE SENSORS, 1–4. IEEE, 2024. https://doi.org/10.1109/sensors60989.2024.10784579.
Der volle Inhalt der QuelleAprile, E. „LXeGRIT: The liquid xenon gamma-ray imaging telescope“. In Fifth compton symposium. AIP, 2000. http://dx.doi.org/10.1063/1.1303308.
Der volle Inhalt der QuelleOberlack, Uwe G., Elena Aprile, Alessandro Curioni, Valeri Egorov und Karl-Ludwig Giboni. „Compton scattering sequence reconstruction algorithm for the liquid xenon gamma-ray imaging telescope (LXeGRIT)“. In International Symposium on Optical Science and Technology, herausgegeben von Ralph B. James und Richard C. Schirato. SPIE, 2000. http://dx.doi.org/10.1117/12.407578.
Der volle Inhalt der QuelleAprile, Elena, Valeri Egorov, Karl-Ludwig Giboni, Steven M. Kahn, Tomotake Kozu, Uwe G. Oberlack, S. Centro et al. „XENA: a liquid-xenon Compton telescope for gamma-ray astrophysics in the MeV regime“. In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, herausgegeben von F. P. Doty und Richard B. Hoover. SPIE, 1998. http://dx.doi.org/10.1117/12.312882.
Der volle Inhalt der QuelleXing, Yajing, Mounir Abaline, Stephane Acounis, Nicolas Beaupere, Jean-Luc Beney, Julien Bert, Stephane Bouvier et al. „Direct Measurement of Ionization Charges in Single-phase Liquid Xenon Compton Telescope for 3γ Medical Imaging“. In 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2019. http://dx.doi.org/10.1109/nss/mic42101.2019.9059808.
Der volle Inhalt der QuelleLemaire, Olivier, W. T. Chen, J. P. Cussonneau, E. Delagnes, J. Donnard, S. Duval, O. Gevin et al. „Development of a readout electronic for the measurement of ionization in liquid xenon compton telescope containing micro-patterns“. In 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference (2012 NSS/MIC). IEEE, 2012. http://dx.doi.org/10.1109/nssmic.2012.6551226.
Der volle Inhalt der QuelleMasbou, J., J. P. Cussonneau, J. Donnard, L. Gallego Manzano, O. Lemaire P. Leray, A. F. Mohamed Hadi, E. Morteau et al. „XEMIS: A new Compton camera with liquid xenon“. In 2014 IEEE 18th International Conference on Dielectric Liquids (ICDL). IEEE, 2014. http://dx.doi.org/10.1109/icdl.2014.6893166.
Der volle Inhalt der QuelleBryman, Douglas, Leonid Kurchaninov, Philip Lu, Fabriece Retiere und Vesna Sossi. „Simulation of compton reconstruction in liquid xenon PET“. In 2007 IEEE Nuclear Science Symposium Conference Record. IEEE, 2007. http://dx.doi.org/10.1109/nssmic.2007.4437092.
Der volle Inhalt der QuelleZhu, Yuwei, Stephane Acounis, Nicolas Beaupere, Jean-Luc Beney, Julien Bert, Stephane Bouvier, Clotilde Canot et al. „XEMIS2: A liquid xenon Compton camera to image small animals“. In 2019 IEEE 20th International Conference on Dielectric Liquids (ICDL). IEEE, 2019. http://dx.doi.org/10.1109/icdl.2019.8796534.
Der volle Inhalt der QuelleWahl, Christopher G., Ethan P. Bernard, Christopher Kachulis, Blair Edwards, Nicole A. Larsen, Brian Tennyson, Sidney B. Cahn, Daniel N. McKinsey, Nicholas E. Destefano und Moshe Gai. „Status and design of two-phase liquid-Xenon compton-imaging detector“. In 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference (2012 NSS/MIC). IEEE, 2012. http://dx.doi.org/10.1109/nssmic.2012.6551369.
Der volle Inhalt der Quelle