Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Liquid system“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Liquid system" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Liquid system"
Jena, Vinod, Sanjay Ghosh, Sapana Gupta, Piyush Thakur, Noorjahan Ansari und Natalija Matić. „LIQUID-LIQUID EQUILIBRIA OF THE PHOSPHORIC ACID, ESTER AND WATER TERNARY SYSTEM“. Rudarsko-geološko-naftni zbornik 35, Nr. 2 (2020): 85–90. http://dx.doi.org/10.17794/rgn.2020.2.8.
Der volle Inhalt der QuelleJanovszky, Dóra, und Kinga Tomolya. „Designing Amorphous/Crystalline Composites by Liquid-Liquid Phase Separation“. Materials Science Forum 790-791 (Mai 2014): 473–78. http://dx.doi.org/10.4028/www.scientific.net/msf.790-791.473.
Der volle Inhalt der QuelleSaito, Shimpei, Yutaka Abe, Akiko Kaneko, Tetsuya Kanagawa, Yuzuru Iwasawa, Eiji Matsuo, Ken-ichi Ebihara, Hiroshi Sakaba, Kazuya Koyama und Hideki Nariai. „ICONE23-1886 EXPERIMENTAL STUDY ON JET INSTABILITY AND BREAKUP BEHAVIOR IN LIQUID-LIQUID SYSTEM“. Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_421.
Der volle Inhalt der QuelleEl-Samadony, Y. A. F., und B. M. Gibbs. „Energy Efficient Liquid Desiccant Hybrid Air Conditioning System“. International Journal of Modeling and Optimization 4, Nr. 3 (Juni 2014): 211–15. http://dx.doi.org/10.7763/ijmo.2014.v4.375.
Der volle Inhalt der QuelleBin Zhang, Bin Zhang, Shiyu Liu Shiyu Liu, Xianzhu Tang Xianzhu Tang und and Jian'gang Lu and Jian'gang Lu. „Adaptive modulation system for liquid crystal phase modulator“. Chinese Optics Letters 14, Nr. 9 (2016): 090604–90607. http://dx.doi.org/10.3788/col201614.090604.
Der volle Inhalt der QuellePark, Manseok, Sungdong Kim und Sarah Eunkyung Kim. „TSV Liquid Cooling System for 3D Integrated Circuits“. Journal of the Microelectronics and Packaging Society 20, Nr. 3 (30.09.2013): 1–6. http://dx.doi.org/10.6117/kmeps.2013.20.3.001.
Der volle Inhalt der QuelleK . Harweel, Cecelia, und Asseel M. Rasheed. „Drop Interface Coalescence in Liquid-Liquid System“. Iraqi Journal of Chemical and Petroleum Engineering 8, Nr. 1 (30.03.2007): 35–42. http://dx.doi.org/10.31699/ijcpe.2007.1.5.
Der volle Inhalt der QuelleDi Wang, Di Wang, Qionghua Wang Qionghua Wang, Chuan Shen Chuan Shen, Xin Zhou Xin Zhou und Chao Liu Chao Liu. „Color holographic zoom system based on a liquid lens“. Chinese Optics Letters 13, Nr. 7 (2015): 072301–72305. http://dx.doi.org/10.3788/col201513.072301.
Der volle Inhalt der QuelleVolden, T., J. Goldowsky, N. Schmid und V. Revol. „Portable Systems for Metered Dispensing of Aggressive Liquids“. SLAS TECHNOLOGY: Translating Life Sciences Innovation 23, Nr. 5 (29.05.2018): 470–75. http://dx.doi.org/10.1177/2472630318775316.
Der volle Inhalt der QuelleKotrasova, Kamila, und Eva Kormaníková. „A Study on Sloshing Frequencies of Liquid-Tank System“. Key Engineering Materials 635 (Dezember 2014): 22–25. http://dx.doi.org/10.4028/www.scientific.net/kem.635.22.
Der volle Inhalt der QuelleDissertationen zum Thema "Liquid system"
Attergren, Max, und Martin Lindwall. „Air Liquid Interface System“. Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299329.
Der volle Inhalt der QuelleEtt ALI-System används för att undersöka om luftburna nanopartiklar kan vara skadliga för människliga lungor. Nedan följer en rapport där ett ALI-System byggt i labb anpassas och förbereds för tillverkning. Tanken är att det skall konstrueras ett mobilt ALI-System som möjliggör mätningar i fält. Rapporten behandlar i huvudsak vilka komponenter som ingår, utformning av dessa samt krav och funktion. Systemet som skall konstrueras är komplext och kräver många delsystem för att klara av mätningar i fält. Delar av dessa system och lösningar på problem behandlas i rapporten. Huvudområden som behandlas är elektriska system, CAD och ritningar samt termiska analyser för att möta de krav som ställs. Projektet genererade ett komplett ritningsunderlag av exponeringsenhet, konceptframtagning för elektriska system samt dimensionering och analys av uppvärmningskällor. Projektets initiala mål att konstruera ett mobilt system, frångicks då upphandlingar av komponenter försenades samt att uppdragsgivaren behövde ritningsunderlag omgående på grund av tillgängligheten av verkstadspersonal under projektets gång. Trots detta anses projektet lyckat då uppdragsgivaren tillhandhölls det som önskades och arbetet som gjordes kan ligga till grund för vidareutveckling av ett mobilt system.
Floyd, Tamara M. (Tamara Michelle) 1974. „A novel microchemical system for rapid liquid-liquid chemistry“. Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8273.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 110-119).
Microchemical systems are sub-milliliter systems for chemical processes. They are constructed using microfabrication techniques originally developed for the fabrication of microelectronic circuits. The reduction in size, as compared to conventional systems, offers several advantages in improvement of heat and mass transfer and control of flow fields. In addition, microchemical systems are smaller, therefore inherently safer and capable of shorter thermal response times. The focus of this work has been a microchemical system with a multi-inlet contactor for liquid-liquid processes. The systems are fabricated using, primarily, silicon and glass in which feature sizes range from approximately 10 to 500 [mu]m. The multi-inlet contactor consists of 10 alternating inlets for two components. Fluids continuously enter the contactor, are focused by a converging channel, mix and react in a 50 m channel. The contactor is the central element in the microchemical system that also includes a parallel plate heat exchanger, infrared transmission detection capabilities and thin film metal temperature sensors. Quantitative data are obtained using on-chip optical detection methods, integrated thin film sensors, and off-chip pressure sensors. For microchemical systems, the length scales are short. Consequently, Reynolds numbers are small and the flow is laminar. When two or more streams are contacted in a homogeneous system, the flow is stable. The short length scales of the resulting lamellar stream enable rapid diffusion mixing for applications, such as kinetics studies or reaction-rate-limited operation of fast reactions.
(cont.) The mixing characteristics in the multi-inlet contactor are investigated through experiments and simulations. Without optimization, sub-second mixing times are achieved. By using experiments and simulations to gain a better understanding of diffusion mixing in the system, 99% mixing is achieved in less than 25 ms. Characterization of the microchemical system also includes determining the overall heat transfer coefficient for the parallel plate heat exchanger and demonstrating on-chip infrared transmission detection from 4000-1000 cm-1. Thus, these devices combine all the features necessary for kinetic studies, specifically control of residence time, control and monitoring of temperature, and concentration measurement by infrared spectroscopy. As a demonstration of microchemical systems as tools for kinetics studies, the microchemical mixer was used with in situ Fourier Transform infrared spectroscopy to monitor the alkaline hydrolysis of methyl formate. This reaction follows second order kinetics and is fast with a half life of 70 ms for the conditions used in this study. The rate constant that was extracted was in good agreement with the literature value. Moreover, in contrast to a previous study, no sample post processing was needed and the half-life of the reaction was reduced by an order of magnitude. Microchemical systems can also be useful tools in achieving and understanding heterogeneous fluid contacting. When an aqueous phase and organic phase are contacted in a 1:1 volumetric ratio, flow segregation can occur ...
by Tamara M. Floyd.
Ph.D.
Zeiner, Tim. „Diffusion across the interface of an liquid-liquid system“. Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-198780.
Der volle Inhalt der QuelleZeiner, Tim. „Diffusion across the interface of an liquid-liquid system“. Diffusion fundamentals 24 (2015) 57, S. 1-2, 2015. https://ul.qucosa.de/id/qucosa%3A14576.
Der volle Inhalt der QuelleGelbart, W. „Bulk liquid-metal irradiation system“. Helmholtz-Zentrum Dresden - Rossendorf, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-165893.
Der volle Inhalt der QuelleBraibant, Bertrand. „Synthèse et étude de systèmes fluorés pour l'extraction liquide-liquide de métaux stratégiques“. Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT175/document.
Der volle Inhalt der QuelleA large part of the metals used by the industry is still coming from mines. Some metals, called strategic metals, may encounter a supply risk or even a total depletion of natural resources. They are usually used in dispersive way which make their recovery complicated, costly and energy intensive since they are in unequal amount, with other metal, in ever more complex matrices. Whether for strategic, economic or societal reason, the metal recycling is about to become an important industry in a near future. Hydrometallurgical processes, and liquid-liquid extraction in particular, are a robust technic giving answer to some of the recycling challenge. Our aim was to develop and study some fluorinated system for the extraction and the separation of metal through liquid-liquid approach. The tenability of the fluorinated part of these system allow the study of multiple interaction (complexation or supramolecular ordering) important in a fundamental point of view in liquid-liquid extraction. Physical and chemical properties such as their miscibility allow the development of new processes in the solvent extraction field such as triphasic liquid extraction system. To this end, two series of fluorinated malonamides with various spacer length between the complexing head and the fluorinated moiety were synthetized. The modulation, through the spacer, of the inductive effect of the fluorinated chain on the physical and chemical properties of the extractant and the complexation of the metal was studied. The influence of various extraction parameters such as the concentration in extractant, the acid and the diluent were characterized. The comparison of these malonamides with their hydrogenated homologues was done and the limits of these systems established. A family of trialkylphosphate was developed and apply to a triphasic extraction system. Preliminary results confirm the approach
Zhang, Liqin. „A new liquid-liquid partitioning system for bioseparations at low temperatures“. Ohio : Ohio University, 1997. http://www.ohiolink.edu/etd/view.cgi?ohiou1184618209.
Der volle Inhalt der QuelleShih, Victor Chi-Yuan Tai Yu-Chong. „Temperature-controlled microchip liquid chromatography system /“. Diss., Pasadena, Calif. : Caltech, 2006. http://resolver.caltech.edu/CaltechETD:etd-04182006-162552.
Der volle Inhalt der QuelleDu, Lingguo. „Rôle des films liquides sur des problèmes de mouillage dynamiques pour des systèmes liquide-liquide“. Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14566/document.
Der volle Inhalt der QuelleEnhanced oil recovery involves the displacement of an organic fluid byan aqueous one in the pores of the rocks. At the pores scale. Thedisplacement of fluids is governed by wetting condition of the system.The viscous and gravity forces are negligible and the capillarityplays a dominant role heterogeneities of channel sizes. Threemicrofluidic systems are designed to study experimentally the role ofmicroscopic liquid films (wetting) or macroscopic ones (corners) inthe pores level. The first one consists of the displacement of ameniscus in a circular capillary with various wetting conditions. Inparticular, for pseudo-partial wetting systems, a contact anglehysteresis is observed but with a weak pinning as compared to partialwetting systems where there are non wetting films. The second andthird ones show the influences of liquid films in the corners of asquare channel. The coupling between the corner flows and the mainflow involves the drainage of the trapped oil cluster. The propertiesof this new mechanism are consistent with the theoretical model, andalso characterized by experiments
Tan, Junyi, und 譚軍毅. „Investigation of novel liquid desiccant cooling system“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42664251.
Der volle Inhalt der QuelleBücher zum Thema "Liquid system"
United States. National Aeronautics and Space Administration., Hrsg. Kinetics of diffusional droplet growth in a liquid/liquid two-phase system. [Washington, DC: National Aeronautics and Space Administration, 1992.
Den vollen Inhalt der Quelle findenE, Fradkov V., und United States. National Aeronautics and Space Administration., Hrsg. Kinetics of diffusional droplet growth in a liquid-liquid two-phase system: Final technical report. [Washington, DC: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenTrindade, Sergio C. Oxygenated transport liquid fuels: The total system = Combustibles liquides oxigenes pour le transport : le systeme globale. London: World Energy Conference, 1989.
Den vollen Inhalt der Quelle findenD, Southwick R., und United States. National Aeronautics and Space Administration., Hrsg. Large liquid rocket engine transient performance simulation system. West Palm Beach, FL: Pratt & Whitney, 1989.
Den vollen Inhalt der Quelle findenD, Southwick R., und United States. National Aeronautics and Space Administration., Hrsg. Large liquid rocket engine transient performance simulation system. West Palm Beach, Fl: United Technologies, Pratt & Whitney ; [Washington, DC, 1989.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Kinetics of diffusional droplet growth in a liquid/liquid two-phase system: Final report. [Washington, DC: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenCenter, Lewis Research, Hrsg. Fatigue criterion to system design, life and reliabilty. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1985.
Den vollen Inhalt der Quelle findenGeorge C. Marshall Space Flight Center., Hrsg. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. [New Orleans, La.]: Martin Marietta Manned Space Systems, 1990.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) Systems Study. [New Orleans, La.]: Martin Marietta, Manned Space Systems, 1989.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Liquid rocket booster (LRB) for the Space Transportation System (STS) Systems Study. [New Orleans, La.?]: Martin Marietta, Manned Space Systems, 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Liquid system"
Shiyan, Chang, Zhao Lili, Zhang Ting und Zhang Xiliang. „Liquid Biofuels“. In Sustainable Automotive Energy System in China, 217–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36847-9_8.
Der volle Inhalt der QuelleFarmer, Thomas. „Liquid–Liquid Transitions in Y2O3–Al2O3 System“. In Structural Studies of Liquids and Glasses Using Aerodynamic Levitation, 65–78. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06575-5_5.
Der volle Inhalt der QuelleMishra, D. P. „Liquid-Propellant Injection System“. In Fundamentals of Rocket Propulsion, 333–95. Boca Raton: CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315175997-10.
Der volle Inhalt der QuelleBorgstedt, H. U., und Z. Peric. „Electrochemical Studies in the Na — Hg System“. In Liquid Metal Systems, 363–68. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1977-5_40.
Der volle Inhalt der QuelleLiu, Xiaohua, und Yi Jiang. „Application of Liquid Desiccant System“. In Desiccant-Assisted Cooling, 249–81. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5565-2_9.
Der volle Inhalt der QuelleSharma, Surbhi, und Khushbu Gumber. „Liquid Organic Hydrogen Carrier System“. In Prospects of Hydrogen Fueled Power Generation, 145–61. New York: River Publishers, 2024. http://dx.doi.org/10.1201/9781032656212-6.
Der volle Inhalt der QuelleZheng, Li, Fu Feng, Ma Linwei, Liu Pei, Zhou Zhai, Zhang Jianbing und Jiang Xiaolong. „Petroleum-Derived Liquid Fuels“. In Sustainable Automotive Energy System in China, 109–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36847-9_5.
Der volle Inhalt der QuellePei, Liu, Ma Linwei, Liu Guangjian, Pan Lingyin und Li Zheng. „Coal-Derived Liquid Fuels“. In Sustainable Automotive Energy System in China, 187–216. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36847-9_7.
Der volle Inhalt der QuelleVan De Pol, F. C. M., und J. Branebjerg. „Micro Liquid-Handling Devices - A Review“. In Micro System Technologies 90, 799–805. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-45678-7_115.
Der volle Inhalt der QuelleAntunes Ferreira, Mafalda, Silvia D’Ambrosi, Thomas Würdinger, Pieter Wesseling und Danijela Koppers-Lalic. „Liquid Biopsy Diagnosis of CNS Metastases“. In Central Nervous System Metastases, 73–86. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23417-1_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Liquid system"
Kamanina, Natalia V., und Natalie A. Vasilenko. „Correlation between speed, resolution, and sensitivity of the organic photoconductor liquid crystal system“. In Liquid Crystals, herausgegeben von Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski und Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.299997.
Der volle Inhalt der QuelleBlunk, D., Klaus Praefcke, M. Jachmann und M. Horn. „1,4-diketo-pyrrolo[3,4-c]pyrrole: a novel core system for liquid crystals“. In Liquid Crystals, herausgegeben von Marzena Tykarska, Roman S. Dabrowski und Jerzy Zielinski. SPIE, 1998. http://dx.doi.org/10.1117/12.301281.
Der volle Inhalt der QuelleLi, Lingshan, Jihwan Kim, Shuojia Shi und Michael J. Escuti. „Color-selective geometric phase lens for apochromatic lens system“. In Liquid Crystals XXIV, herausgegeben von Iam Choon Khoo. SPIE, 2020. http://dx.doi.org/10.1117/12.2569165.
Der volle Inhalt der QuelleHicks, Sarah, Kyung Min Lee, Michael E. McConney, Nelson V. Tabiryan und Timothy J. Bunning. „Rewriting bulk photoalignment of nematic liquid crystals in a two-step exposure system“. In Liquid Crystals XXV, herausgegeben von Iam Choon Khoo. SPIE, 2021. http://dx.doi.org/10.1117/12.2594786.
Der volle Inhalt der QuelleKumemura, Momoko. „Liquid-Liquid Extraction in Microfluidic System Using Dispersed Liquid Droplet“. In SLOW DYNAMICS IN COMPLEX SYSTEMS: 3rd International Symposium on Slow Dynamics in Complex Systems. AIP, 2004. http://dx.doi.org/10.1063/1.1764075.
Der volle Inhalt der QuelleKim, W. T., K. S. Song und Y. Lee. „DEVELOPMENT AND EVALUATION OF A TWO-PHASE LOOP-TYPE THERMOSYPHON FOR COOLING TELECOMMUNICATIONS SYSTEM“. In International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut: Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.230.
Der volle Inhalt der QuellePierson, R. M., J. E. Lucken und H. W. Shaver. „Liquid Petroleum Confinement System“. In SPE Production and Operations Symposium. Society of Petroleum Engineers, 2001. http://dx.doi.org/10.2118/67243-ms.
Der volle Inhalt der QuelleWang, Qiong-Hua, Di Wang, Lei Li und Su-Juan Liu. „Holographic zoom system based on spatial light modulator and liquid device“. In Emerging Liquid Crystal Technologies XIII, herausgegeben von Igor Muševič, Liang-Chy Chien, Dirk J. Broer und Vladimir G. Chigrinov. SPIE, 2018. http://dx.doi.org/10.1117/12.2297074.
Der volle Inhalt der QuelleHe, Xiaoxian, Qinggui Tan, Hongru Guo, Liang Wu, Xiangru Wang und Caidong Xiong. „Polarization-independent beam-steering system based on liquid-crystal spatial light modulators“. In Emerging Liquid Crystal Technologies XIV, herausgegeben von Liang-Chy Chien. SPIE, 2019. http://dx.doi.org/10.1117/12.2508207.
Der volle Inhalt der QuelleFlynn, Howard, Brian Lusby und Mark Villemarette. „Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed“. In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-5842.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Liquid system"
Adams, R. T. Liquid Effluent Monitoring Information System (LEMIS) System Construction. Office of Scientific and Technical Information (OSTI), Oktober 1994. http://dx.doi.org/10.2172/10192088.
Der volle Inhalt der QuelleMeloy, R. T. Contaminated liquid drain system operability test. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/65028.
Der volle Inhalt der QuelleBaker, M. N., und H. M. Houston. Liquid waste treatment system. Final report. Office of Scientific and Technical Information (OSTI), Juni 1999. http://dx.doi.org/10.2172/754794.
Der volle Inhalt der QuelleWard, Kyle, und Timothy Jacobs. PR-457-20204-R01 Pump Station Efficiency Improvement Evaluation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 2021. http://dx.doi.org/10.55274/r0012006.
Der volle Inhalt der QuelleGreg Harper und Charles Powars. Advanced Liquid Natural Gas Onboard Storage System. Office of Scientific and Technical Information (OSTI), Oktober 2003. http://dx.doi.org/10.2172/835120.
Der volle Inhalt der QuelleWestsik, J. H. Jr. Temperature control system for liquid-fed ceramic melters. Office of Scientific and Technical Information (OSTI), Oktober 1986. http://dx.doi.org/10.2172/5058726.
Der volle Inhalt der QuelleWestsik, J. H. Jr, und B. B. Brenden. Melter viewing system for liquid-fed ceramic melters. Office of Scientific and Technical Information (OSTI), Januar 1988. http://dx.doi.org/10.2172/5460207.
Der volle Inhalt der QuelleBaker, M. N., und R. F. Gessner. Low-level liquid waste treatment system start-up. Office of Scientific and Technical Information (OSTI), Juli 1989. http://dx.doi.org/10.2172/10197011.
Der volle Inhalt der QuelleGoericke, Ralf. Acquisition of a Liquid Chromatography/Mass-Spectrometry System. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada353903.
Der volle Inhalt der QuelleNataf, J., und F. Winkelmann. Dynamic simulation of a liquid desiccant cooling system using the Energy Kernel System. Office of Scientific and Technical Information (OSTI), Februar 1991. http://dx.doi.org/10.2172/5968703.
Der volle Inhalt der Quelle