Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Liquid miscibility gap“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Liquid miscibility gap" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Liquid miscibility gap"
Janovszky, Dóra, und Kinga Tomolya. „Designing Amorphous/Crystalline Composites by Liquid-Liquid Phase Separation“. Materials Science Forum 790-791 (Mai 2014): 473–78. http://dx.doi.org/10.4028/www.scientific.net/msf.790-791.473.
Der volle Inhalt der QuelleHong, S. Y., W. H. Guo und H. W. Kui. „Metastable liquid miscibility gap in Pd–Si and its glass-forming ability: Part III“. Journal of Materials Research 14, Nr. 9 (September 1999): 3668–72. http://dx.doi.org/10.1557/jmr.1999.0495.
Der volle Inhalt der QuelleWang, Zhong Yuan, Jie He, Bai Jun Yang, Hong Xiang Jiang, Jiu Zhou Zhao, Tong Min Wang und Hong Ri Hao. „Liquid Phase Separation and Dual Glassy Structure Formation of Designed Zr-Ce-Co-Cu Alloys“. Materials Science Forum 849 (März 2016): 100–106. http://dx.doi.org/10.4028/www.scientific.net/msf.849.100.
Der volle Inhalt der QuellePlevachuk, Yu, V. Filippov, V. Kononenko, P. Popel, A. Rjabina, V. Sidorov und V. Sklyarchuk. „Investigation of the miscibility gap region in liquid Ga–Pb alloys“. International Journal of Materials Research 94, Nr. 9 (01.09.2003): 1034–39. http://dx.doi.org/10.1515/ijmr-2003-0187.
Der volle Inhalt der QuelleSun, Xiao Jun, Jie He und Jiu Zhou Zhao. „Microstructure Formation and Nanoindentation Behavior of Rapidly Solidified Cu-Fe-Zr Immiscible Alloys“. Materials Science Forum 993 (Mai 2020): 39–44. http://dx.doi.org/10.4028/www.scientific.net/msf.993.39.
Der volle Inhalt der QuellePlevachuk, Yu, V. Didoukh und B. Sokolovskii. „The miscibility gap region in liquid ternary alloys“. Journal of Non-Crystalline Solids 250-252 (August 1999): 325–28. http://dx.doi.org/10.1016/s0022-3093(99)00257-4.
Der volle Inhalt der QuelleLeshchenko, Egor D., und Jonas Johansson. „Surface energy driven miscibility gap suppression during nucleation of III–V ternary alloys“. CrystEngComm 23, Nr. 31 (2021): 5284–92. http://dx.doi.org/10.1039/d1ce00743b.
Der volle Inhalt der QuelleTang, C., Y. Du, H. Xu, S. Hao und L. Zhang. „Study on the nonexistence of liquid miscibility gap in the Ce-Mn system“. Journal of Mining and Metallurgy, Section B: Metallurgy 43, Nr. 1 (2007): 21–28. http://dx.doi.org/10.2298/jmmb0701021t.
Der volle Inhalt der QuelleShim, Jae-Hyeok, Hyung-Nae Lee, Heon Phil Ha, Young Whan Cho und Eui-Pak Yoon. „Liquid miscibility gap in the Al–Pb–Sn system“. Journal of Alloys and Compounds 327, Nr. 1-2 (August 2001): 270–74. http://dx.doi.org/10.1016/s0925-8388(01)01426-8.
Der volle Inhalt der QuellePlevachuk, Yu, V. Didoukh und B. Sokolovskii. „The miscibility gap region in liquid metal-chalcogen alloys“. Journal of Molecular Liquids 93, Nr. 1-3 (September 2001): 225–28. http://dx.doi.org/10.1016/s0167-7322(01)00234-3.
Der volle Inhalt der QuelleDissertationen zum Thema "Liquid miscibility gap"
Brunel, Alan. „Propriétés thermodynamiques et thermophysiques des liquides à haute température : applications aux combustibles nucléaires“. Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS426.
Der volle Inhalt der QuelleDuring a severe accident involving the meltdown of the core of a pressurized water nuclear reactor, the nuclear fuel will react with the zircalloy cladding around it and the structural materials of the core to make a high temperature magma called corium. Depending on its composition and its temperature, the corium can stratify because of two non-miscible metallic and oxidic liquids. For some stratification configurations, the heat flow can focus on the vessel’s wall, threatening its integrity with a corium flowing outside of it. The aim of this thesis is to collect thermodynamic and thermophysic data on a prototypical corium, the U-Zr-Fe-O system. The thermodynamic data collected in this thesis are related to the definition of the liquid miscibility gap and the compositions of the liquids in the U-Zr-Fe-O system and its sub-systems, depending on the composition and the temperature. Compositions of interest were selected after performing thermodynamic calculation by the CALPHAD method with the TAF-ID V13 database. The corresponding samples underwent heat treatments and post-treatment analyses to measure the compositions of the liquids and to compare them to thermodynamic calculations. An iron rich liquid miscibility gap and a zirconium rich one were highlighted in the Fe-Zr-O system. Although calculations were in agreement with data from the first miscibility gap at 1990 °C, measurements in the zirconium rich miscibility gap at 2420 °C and 2650 °C reveal an underestimation of the zirconium quantity in the metallic liquid and its overestimation in the oxidic liquid by the model. Studies on the UO2-Zr-Fe system at 2423 °C show that the liquid miscibility gap definition and the compositions of the liquids depend on the quantity of iron in the system, the U/Zr ratio and corium oxidation degree. Furthermore, the zirconium molar fraction is underestimated by the model in the metallic liquid to the benefit of iron, and is overestimated in the oxidic liquid. Finally, the oxygen solubility in the metallic liquid is underestimated by the model. Thermophysic data were collected thanks to the improvement of the ATTILHA experimental setup, allowing the study of oxygen sensitive or radioactive liquids at high temperature by using a laser heating. Experimental values on liquidus and eutectic transformation temperatures of the oxygen-rich domain of the Zr-O system were acquired with this setup. Furthermore, the development of the aerodynamic levitation allows us the investigation liquids’densities for the Zr-Fe2O3 and the Zr-UO2 systems between 1884 °C and 2268 °C for different zirconium molar fractions. Densities of liquids from the Zr-Fe2O3 system were used to refine surface tension values acquired on the VITI-MBP setup at CEA Cadarache. These values confirmed the surfacting properties of the oxygen on these liquids. The experimental data collected during this thesis will be used to feed the databases and to improve the forecast of the corium’s behavior during a severe accident
Kim, Sung Sik. „Calculations of subliquidus miscibility gaps in silicate and borate systems“. Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/10116.
Der volle Inhalt der Quelle„metastable liquid state miscibility gap in undercooled Pd-ni-P melts“. 2012. http://library.cuhk.edu.hk/record=b5549028.
Der volle Inhalt der Quelle在這篇論文所論述的研究工作中,我們運用類似的技術來研究Pḍ₄₀₊₀₅{U+2093}Nị₄₀₊₀₅{U+2093}P₂₀₋{U+2093}的合金系統從 x = 0到3.5的非晶相分離。
實驗結果顯示,任何在空氣中冷卻到578 K再在613K退火一小時的樣品 (乙類樣本),非晶相分離都沒有發生。然而,在613K退火一小時而沒有經過578K和613K溫度範圍的Pḍ₄₀₊₀₅{U+2093}Nị₄₀₊₀₅{U+2093}P₂₀₋{U+2093}大塊非晶金屬(丙類樣本),卻在部分成分範圍中發生相分離。在丙類樣本中,當x>1,相分離發生;而當x≤1,相分離沒有發生。通過量度高角環形暗場影像中顯示的兩個相的平均波長,我們可得出其統計結果,而該統計結果與槓桿規則吻合。從此可見,在過冷的Pd-Ni-P熔合合金中存在著亞穩液態混溶間隙。並且這種出現在有負值混合焓的系統的亞穩液態混溶間隙,可以以短程有序的模型來解釋。
Recently, the phase separation was found in the system of amorphous Pd₄₁.₂₅Ni₄₁.₂₅P₁₇.₅ alloys which has negative heat of mixing among the constituent elements. In their work, the directly imaging method by technique of high resolution TEM provided the evidence of phase separation in amorphous Pd-Ni-P system.
In this work, by applying the similar technique of that previous studies, the alloy systems of Pḍ₄₀₊₀₅{U+2093}Nị₄₀₊₀₅{U+2093}P₂₀₋{U+2093} for x = 0 to 3.5were studied for amorphous phase separation.
The experimental result showed that for any sample which was allowed to cool down in air to 578 K before thermal annealing (B-type), there was no amorphous phase separation. But for the Pḍ₄₀₊₀₅{U+2093}Nị₄₀₊₀₅{U+2093}P₂₀₋{U+2093} BMG that was annealed at 613K for one hour without bypassing the temperature range between 578K and 613K (C-type), phase separation occurred with x>1 but absented when x≤1. The result of average wavelength measurement of the two phases in the HAADF images of the sample with phase separation obeyed the lever rule. This result suggested that in undercooled molten Pd-Ni-P alloys, there is a metastable liquid state miscibility gap. The formation of such miscibility gap in a system with negative heat of mixing can be explained by the model of unique short range orders.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Lau, Man Tat = 過冷鈀、鎳、磷熔化物中的亞穩液態互溶間隙 / 劉文達.
Thesis (M.Phil.)--Chinese University of Hong Kong, 2012.
Includes bibliographical references.
Abstracts also in Chinese.
Lau, Man Tat = Guo leng ba, nie, lin rong hua wu zhong de ya wen ye tai hu rong jian xi / Liu Wenda.
Abstract --- p.i
Acknowledgement --- p.iv
List of Tables --- p.vii
List of Figures --- p.viii
Chapter Chapter 1 --- : Introduction --- p.1
Chapter 1.1 --- Amorphous metal --- p.1
Chapter 1.2 --- Phase Separation --- p.3
Chapter 1.3 --- Nucleation --- p.6
Chapter 1.4 --- Spinodal Decomposition --- p.10
Chapter 1.5 --- Objective of the project --- p.16
Figures --- p.18
References --- p.26
Chapter Chapter 2 --- : Experiment --- p.27
Chapter 2.1 --- Preparation of sample --- p.27
Chapter 2.2 --- Differential scanning calorimetry --- p.30
Chapter 2.3 --- Preparation of TEM sample --- p.31
Chapter 2.4 --- Microstructural analysis --- p.33
Figures --- p.36
References --- p.39
Chapter Chapter 3 --- : A metastable liquid state miscibility gap in undercooled Pd-Ni-P melts --- p.40
Chapter 3.1 --- Introduction --- p.40
Chapter 3.2 --- Materials and experimental --- p.41
Chapter 3.3 --- Results --- p.44
Chapter 3.4 --- Discussions --- p.49
Chapter 3.5 --- Conclusions --- p.52
Table --- p.53
Figures --- p.54
References --- p.75
Bücher zum Thema "Liquid miscibility gap"
Ratke, L., H. Frederikson, G. Ibe und B. Prinz. Systems With a Liquid Miscibility Gap: Proceedings of an International Workshop Held in October 1992. Dgm Metallurgy Information, 1995.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Liquid miscibility gap"
Predel, B., L. Ratke und H. Fredriksson. „Systems with a Miscibility Gap in the Liquid State“. In Fluid Sciences and Materials Science in Space, 517–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-46613-7_15.
Der volle Inhalt der QuelleFeuerbacher, Berndt, Hans Hamacher und Robert J. Naumann. „Binary Systems with Miscibility Gap in the Liquid State“. In Materials Sciences in Space, 343–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82761-7_14.
Der volle Inhalt der QuelleWang, Frederick E. „Miscibility Gap Between Two Liquid Metals“. In Bonding Theory for Metals and Alloys, 1–4. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-444-64201-1.00001-4.
Der volle Inhalt der QuelleWang, Frederick E. „Miscibility Gap (MG) Between Two Liquid Metals“. In Bonding Theory for Metals and Alloys, 9–11. Elsevier, 2005. http://dx.doi.org/10.1016/b978-044451978-8/50004-0.
Der volle Inhalt der QuelleWilliams, R. J. P., und J. J. R. Frausto Da Silva. „Equilibria in dilute solutions in water“. In The Natural Selection of the Chemical Elements, 148–91. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780198558439.003.0005.
Der volle Inhalt der QuelleIkariya, Takao, und Ryoji Noyori. „Advances in Homogeneous, Heterogeneous, and Biphasic Metal-Catalyzed Reactions in Dense-Phase Carbon Dioxide“. In Green Chemistry Using Liquid and Supercritical Carbon Dioxide. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195154832.003.0006.
Der volle Inhalt der QuelleSasi, Renjith, S. L. Sreejith und Roy Joseph. „Ionic Liquids for the Surface Modification of Polymers and Medical Devices“. In Ionic Liquids: Eco-friendly Substitutes for Surface and Interface Applications, 354–79. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815136234123010019.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Liquid miscibility gap"
Enab, Khaled, Thomas Elizondo, Youssef Elmasry, Leonel Flores und Alfred Addo-Mensah. „Experimental Investigation of Liquid, Supercritical CO2, CH4, and CO2/CH4 Mixture to Improve Oil Recovery“. In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-24523-ms.
Der volle Inhalt der QuelleGibrata, Muhammad A., Giamal Ameish, Yanfidra Djanuar, Magdi Eldali, Qingfeng Huang, Jose Lozano, Nizarudeen Ali und Bashar Mansour. „Advanced PVT and Core Analysis for Enhanced Oil Recovery Study of Unconsolidated Sandstone Reservoir“. In Gas & Oil Technology Showcase and Conference. SPE, 2023. http://dx.doi.org/10.2118/214025-ms.
Der volle Inhalt der QuelleSanlorenzo, Andrea, Marc Bustin, Amanda Bustin und Gareth Chalmers. „CO2 Permeability in Shale Gas Reservoirs: Insights from the Montney Formation“. In SPE Canadian Energy Technology Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/212793-ms.
Der volle Inhalt der QuelleBustin, Amanda Marilyn, R. Marc Bustin, Robert Downey und Kiran Venepalli. „Laboratory Analyses and Compositional Simulation of the Eagle Ford and Wolfcamp Shales: A Novel Shale Oil EOR Process“. In SPE Improved Oil Recovery Conference. SPE, 2022. http://dx.doi.org/10.2118/209348-ms.
Der volle Inhalt der QuelleLi, Qiaoyun, Shuhong Wu, Han Jia, Baohua Wang, Xili Deng, Hua Li, Tianyi Fan und Mingyuan Xu. „CCUS Numerical Simulation Technology and its Application in a Carbonate Reservoir of the Middle East“. In SPE Reservoir Characterisation and Simulation Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/212634-ms.
Der volle Inhalt der QuelleKaradkar, Prasad, Murtadha J. AlTammar, Mohammed Alabdrabalnabi und Ahmad Busaleh. „Enhancing Fracture Network Complexity Using Carbonated Slickwater Fracturing“. In Middle East Oil, Gas and Geosciences Show. SPE, 2023. http://dx.doi.org/10.2118/213279-ms.
Der volle Inhalt der QuelleBozeman, Tim, Will Nelle und Quoc Nguyen. „Small Scale EOR Pilot in the Eastern Eagle Ford Boosts Production“. In SPE Improved Oil Recovery Conference. SPE, 2022. http://dx.doi.org/10.2118/209429-ms.
Der volle Inhalt der QuelleAriza-Quiroga, C., J. D. Aristizabal, J. J. Martinez Vertel, C. Cundar, C. Delgadillo, M. L. Trujillo-Portillo, J. Sandoval, G. A. Maya und R. Osorio. „Effect of Phase Behavior and Mass Transfer Mechanisms on Crude Oil Recovery and CO2 Storage in a CO2 Injection Process in Colombian Reservoirs“. In SPE Latin American and Caribbean Petroleum Engineering Conference. SPE, 2023. http://dx.doi.org/10.2118/213132-ms.
Der volle Inhalt der QuelleLacerda, V. T., A. T. Prata und F. Fagotti. „Experimental Characterization of Oil-Refrigerant Two-Phase Flow“. In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1302.
Der volle Inhalt der QuelleAlotaibi, F., M. Rafie, T. Almubarak und A. Alomair. „Insights into H2S Scavengers and Corrosion Inhibitor Interactions for Sour Crude Applications“. In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-24603-ms.
Der volle Inhalt der Quelle