Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Liquid local structure“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Liquid local structure" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Liquid local structure"
Godonoga, Maia, Alex Malins, Jens Eggers und C. Patrick Royall. „Local structure of liquid–vapour interfaces“. Molecular Physics 109, Nr. 7-10 (30.03.2011): 1393–402. http://dx.doi.org/10.1080/00268976.2011.564217.
Der volle Inhalt der QuelleYang, Cheng, und Xin Zhou. „The multiple local structures in liquid water“. International Journal of Modern Physics B 32, Nr. 18 (15.07.2018): 1840003. http://dx.doi.org/10.1142/s0217979218400039.
Der volle Inhalt der QuelleKirian, I. M., A. D. Rud, O. S. Roik, V. P. Kazimirov, O. M. Yakovenko und A. M. Lakhnik. „Local atomic structure of liquid Al87Mg13 alloy“. Journal of Non-Crystalline Solids 586 (Juni 2022): 121562. http://dx.doi.org/10.1016/j.jnoncrysol.2022.121562.
Der volle Inhalt der QuelleZhao, Xiaolin, Xiufang Bian, XinXin Li, KaiKai Song, Yanwen Bai und YunFang Li. „Local structure of supercooled liquid Ga90In10 alloy“. Chinese Journal of Physics 73 (Oktober 2021): 74–80. http://dx.doi.org/10.1016/j.cjph.2021.05.023.
Der volle Inhalt der QuelleYoshioka, Shinya, Yukinobu Kawakita, Makoto Kanehira und Shin'ichi Takeda. „Local Structure of Liquid IVb–Te Mixtures“. Japanese Journal of Applied Physics 38, S1 (01.01.1999): 468. http://dx.doi.org/10.7567/jjaps.38s1.468.
Der volle Inhalt der QuelleKawakita, Yukinobu, Shinya Yoshioka, Ikuo Hiraishi, Makoto Kanehira und Sin'ichi Takeda. „Local Structure of Compound-Forming Liquid Alloys“. Japanese Journal of Applied Physics 38, S1 (01.01.1999): 472. http://dx.doi.org/10.7567/jjaps.38s1.472.
Der volle Inhalt der QuelleMitus, Antoni C., und Alexander Z. Patashinskii. „Study of local structure of “computer” liquid“. Ferroelectrics 104, Nr. 1 (April 1990): 395–400. http://dx.doi.org/10.1080/00150199008223846.
Der volle Inhalt der QuelleHoshino, Hideoki, und Hirohisa Endo. „Local structure of liquid rubidium-selenium mixtures“. Journal of Non-Crystalline Solids 117-118 (Februar 1990): 525–28. http://dx.doi.org/10.1016/0022-3093(90)90584-9.
Der volle Inhalt der QuelleYang Cheng und Zhou Xin. „Multiple types of local structure in liquid water“. Acta Physica Sinica 65, Nr. 17 (2016): 176501. http://dx.doi.org/10.7498/aps.65.176501.
Der volle Inhalt der QuelleYang, Cheng, Chuanbiao Zhang, Fangfu Ye und Xin Zhou. „Ultra-high-density local structure in liquid water“. Chinese Physics B 28, Nr. 11 (Oktober 2019): 116104. http://dx.doi.org/10.1088/1674-1056/ab4710.
Der volle Inhalt der QuelleDissertationen zum Thema "Liquid local structure"
Täuber, Daniela, Katrin Radscheit, Rafael Camacho, Ivan Scheblykin und Borczyskowski Christian von. „Guest molecule diffusion and conformation influenced by local liquid crystal structure“. Diffusion fundamentals 20 (2013) 103, S. 1-2, 2013. https://ul.qucosa.de/id/qucosa%3A13692.
Der volle Inhalt der QuelleTäuber, Daniela, Katrin Radscheit, Rafael Camacho, Ivan Scheblykin und Borczyskowski Christian von. „Guest molecule diffusion and conformation influenced by local liquid crystal structure“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-183950.
Der volle Inhalt der QuelleKlein, Holger. „Ordre local dans des phases quasicristallines, approximantes et liquides Al-Pd-Mn“. Grenoble INPG, 1997. http://www.theses.fr/1997INPG0138.
Der volle Inhalt der QuelleZhao, Bin. „Physical properties of Fe-C-S and Fe-S alloys under planetary core condition“. Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS542.
Der volle Inhalt der QuelleTerrestrial planets possess a metallic core composed of iron alloys, which are the products of long-period differentiation. The Moon is the closest terrestrial planetary body to the Earth, and also most well-constrained thanks to the numerous space missions including landing objects and orbiting spacecrafts. The collected observables allow people to build Moon models and infer the core properties. Regarding its composition, sulfur and carbon are considered as two plausible light elements in the Moon’s core, but most of the cases were discussed in terms of binary Fe-S or Fe-C, in absence of the knowledge of Fe-C-S alloy’s properties. This study has provided a discussion from a Ternary-Fe-C-S point of view, based on the physical properties of liquid Fe-C-S alloys determined experimentally. Specifically, local structure and density of liquid Fe-C-S alloys were studied by in situ X-ray diffraction and absorption experiments below 5 GPa and between 1600 K and 1900 K. Miscibility of Fe-C-S alloys was studied by quench experiments between 2 and 6 GPa at 1650 K and 2000 K, respectively. The measured density was employed to build a thermodynamic model for density of liquid Fe-C-S alloys as a function of pressure, temperature, and C/S content. This model, together with the miscibility gap, are used to discuss the light element content in the Moon’s core. Compared to the lunar missions, the others started much later with considerably increased difficulties and risks, leaving those terrestrial planetary bodies farther to the Earth still poorly constrained. For instance, the Galileo space craft, which is the first Jupiter mission performed in 1990S, collected the gravitational data of the four satellites of Jupiter, among which Europa, Io, and Ganymede are considered highly differentiated. Without further information, the core was considered to be composed of Fe-S. Fe3S2 is a potential candidate forming at pertinent P-T conditions, but its structure, lattice parameters, accurate forming condition remains unknown. For this part of the PhD work, the properties of Fe-S compounds were studied by in situ X-ray diffraction from 11 to 15 GPa and from room temperature to melting. The accurate forming condition of Fe3S2 and its structural properties were determined by the diffraction pattern, which enables the inference on the core composition of middle-sized planetary bodies
Simonet, Virginie. „Magnetisme et ordre local des quasicristaux et liquides al-pd-mn et al-mn“. Paris 11, 1998. http://www.theses.fr/1998PA112259.
Der volle Inhalt der QuelleCavalleri, Matteo. „Local Structure of Hydrogen-Bonded Liquids“. Doctoral thesis, Stockholm : Fysikum, Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-286.
Der volle Inhalt der QuelleAugier, Frédéric. „Structure locale du champ hydrodynamique dans les écoulements dispersés liquide-liquide concentrés“. Toulouse, INPT, 2001. http://www.theses.fr/2001INPT009G.
Der volle Inhalt der QuelleNdao, Makha. „Propriétés physiques des cristaux liquides discotiques nanoconfinés“. Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00979588.
Der volle Inhalt der QuelleConstantin, Doru-Cosmin. „Défauts d'équilibrage des phases ordonnées et structure du liquide isotrope d'un mélange lyotrope de surfactant non-ionique“. Lyon, École normale supérieure (sciences), 2002. http://www.theses.fr/2002ENSL0222.
Der volle Inhalt der QuelleMarín, Aguilar Susana. „Local structure and dynamics of dense colloidal systems : from patchy particles to hard spheres“. Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP052.
Der volle Inhalt der QuelleThe role played by the structure in determining the dynamics of glassy colloidal systems is still a subject of debate. However, there is compelling evidence of a direct link between changes in the local structure and the dynamical slowdown in glassy systems. Here, we explore the interplay between local structure and dynamics by using patchy particles as glass formers. This is done by making use of molecular dynamics simulations. We show that reinforcing icosahedral geometry causes, the system to exhibit an extreme slowdown in its dynamics. With these results, we provide a route for controlling glassy dynamics through the use of patchy particles. Additionally, an interesting point is whether we can extract information about dynamics from only structural information. In order to explore this point, we simulate a wide variety of hard-sphere mixtures. We show that global dynamics of these systems can be precisely predicted by quantifying the tetrahedrality of the local structure: an order parameter that consists of counting the number of tetrahedra each particle participates in. The predictions of this order parameter maintain their accuracy over a wide variety of densities proving its universality in this family of glass formers. Moreover, it is also capable of capturing the changes in the local dynamics, as regions with high tetrahedrality are strongly correlated with regions with slow dynamics. Finally, we demonstrate that unsupervised machine learning techniques can be used to classify particles with different structural environments, which are strongly correlated to local dynamics
Buchteile zum Thema "Liquid local structure"
Marekha, Bogdan A., Volodymyr Koverga, Nishith Maity, Akos Juhasz, François A. Miannay, Anton Inkol, Toshiyuki Takamuku, Pal Jedlovszky, Oleg N. Kalugin und Abdenacer Idrissi. „Local Structure in Mixtures of Ionic Liquid with Molecular Solvent: Vibration Spectroscopy, NMR and Molecular Dynamics Simulation“. In Molecular Basics of Liquids and Liquid-Based Materials, 289–334. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5395-7_10.
Der volle Inhalt der QuelleBenfatto, M., C. R. Natoli, J. Garcia, A. Marcelli, A. Bianconi und I. Davoli. „Local Order at the Manganese Sites in Ionic Solutions by XANES (X-ray absorption near edge structure)“. In Amorphous and Liquid Materials, 142–45. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3505-1_11.
Der volle Inhalt der QuelleGe, Nien-Hui, Martin T. Zanni und Robin M. Hochstrasser. „Local structure and dynamics of liquid acetone by heterodyned 2D IR spectroscopy“. In Ultrafast Phenomena XIII, 592–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59319-2_184.
Der volle Inhalt der QuelleDi Bitonto, Maria Giovanna, Alara Kutlu und Alessandra Zanelli. „Fog Water Harvesting Through Smart Façade for a Climate Resilient Built Environment“. In The Urban Book Series, 725–34. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29515-7_65.
Der volle Inhalt der QuelleBelyakov, Vladimir. „Localized Modes in Optics of Photonic Liquid Crystals with Local Anisotropy of Absorption“. In Diffraction Optics of Complex-Structured Periodic Media, 217–34. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-43482-7_8.
Der volle Inhalt der QuelleVeziroglu, Salih, Moritz Paulsen, Jan Schardt, Blessing Adejube, Cenk Aktas, Alexander Vahl und Martina Gerken. „Photocatalytic Deposition for Metal Line Formation“. In Springer Series on Bio- and Neurosystems, 241–63. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36705-2_10.
Der volle Inhalt der QuelleHarada, Makoto, Tetsuo Okada und Iwao Watanabe. „Analysis of local structure of ion adsorbed on the gas/liquid interface“. In Studies in Surface Science and Catalysis, 121–24. Elsevier, 2001. http://dx.doi.org/10.1016/s0167-2991(01)82049-8.
Der volle Inhalt der QuelleWarner, M., und E. M. Terentjev. „Classical Elasticity“. In Liquid Crystal Elastomers, 63–82. Oxford University PressOxford, 2003. http://dx.doi.org/10.1093/oso/9780198527671.003.0004.
Der volle Inhalt der QuelleOta, S., K. Asai und S. Oya. „Solidification of Aluminum Alloy Weld Metal“. In Encyclopedia of Aluminum and Its Alloys. Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9781351045636-140000438.
Der volle Inhalt der QuelleChen, S. P., T. Egami und V. Vitek. „TEMPERATURE DEPENDENCE OF THE LOCAL STRUCTURE IN TRANSITION FROM LIQUID TO GLASS: A MOLECULAR DYNAMICS STUDY“. In Rapidly Quenched Metals, 577–80. Elsevier, 1985. http://dx.doi.org/10.1016/b978-0-444-86939-5.50139-1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Liquid local structure"
Figueiredo Neto, Antônio M., Oscar R. Santos, Dennys Reis, Arnaldo G. Oliveira-Filho und Cristiano L. P. Oliveira. „Structure and local order of lyotropic cholesteric calamitic phases: the effect of the chiral molecule (Conference Presentation)“. In Liquid Crystals XXVI, herausgegeben von Iam Choon Khoo. SPIE, 2022. http://dx.doi.org/10.1117/12.2632245.
Der volle Inhalt der QuelleGe, Nien-Hui, und Robin M. Hochstrasser. „Local structure and dynamics of liquid acetone by heterodyned 2D IR spectroscopy“. In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/up.2002.tue32.
Der volle Inhalt der QuelleKikugawa, Gota, Shu Takagi, Yoichiro Matsumoto und Taku Ohara. „A Molecular Dynamics Study on the Local Structure of Liquid-Vapor Interface of Water and L-J Fluid“. In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32722.
Der volle Inhalt der QuelleRoy, Ramendra P. „On the Structure of Turbulent Bubbly Gas-Liquid Flows“. In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0762.
Der volle Inhalt der QuelleLee, Tae-Ho, Byong-Jo Yun, Goon-Cherl Park, Takashi Hibiki und Seong-O. Kim. „Local Flow Structure of Subcooled Boiling Flow of Water in a Heated Annulus“. In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48170.
Der volle Inhalt der QuelleRahman, Muhammad M., Cesar F. Hernandez und Jorge C. Lallave. „Flow Structure and Heat Transfer During Free Liquid Jet Impingement on a Hemispherical Plate“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15406.
Der volle Inhalt der QuelleGradeck, Michel, und Michel Lebouche. „LOCAL STRUCTURE OF THE GAS-LIQUID FLOW IN HORIZONTAL CORRUGATED CHANNELS - FLOW PATTERNS AND WALL SHEAR STRESS“. In International Symposium on Transient Convective Heat Transfer. New York: Begellhouse, 1996. http://dx.doi.org/10.1615/ichmt.1996.transientconvheattransf.390.
Der volle Inhalt der QuelleRuths, M., S. Lundgren, K. Persson, A. Hillerstro¨m und K. Boschkova. „Tribological Properties of Associated Structures at Solid–Liquid Interfaces“. In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63225.
Der volle Inhalt der QuelleLallave, Jorge, und Muhammad M. Rahman. „Flow Structure and Heat Transfer During Free Liquid Jet Impingement Over a Rotating Disk“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82131.
Der volle Inhalt der QuelleGong, Jianguo, Sheng Zeng und Tao Jin. „Effect of Hydrostatic Pressure on Buckling Behavior of Storage Tanks Under Local Support Settlement“. In ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-97964.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Liquid local structure"
Charles A. Eckert, Charles L. Liotta und Rigoberto Hernandez. Gas-Expanded Liquids: Synergism of Experimental and Computational Determinations of Local Structure. Office of Scientific and Technical Information (OSTI), Juni 2007. http://dx.doi.org/10.2172/910459.
Der volle Inhalt der QuelleRoss, M. The phase diagram of molybdenum at extreme conditions and the role of local liquid structures. Office of Scientific and Technical Information (OSTI), August 2008. http://dx.doi.org/10.2172/945533.
Der volle Inhalt der Quelle