Zeitschriftenartikel zum Thema „Lipidic model membranes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Lipidic model membranes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Le Goff, Thomas, Tung B. T. To und Olivier Pierre-Louis. „Shear dynamics of confined membranes“. Soft Matter 17, Nr. 22 (2021): 5467–85. http://dx.doi.org/10.1039/d1sm00322d.
Der volle Inhalt der QuelleSejwal, Kushal, Mohamed Chami, Paul Baumgartner, Julia Kowal, Shirley A. Müller und Henning Stahlberg. „Proteoliposomes – a system to study membrane proteins under buffer gradients by cryo-EM“. Nanotechnology Reviews 6, Nr. 1 (01.02.2017): 57–74. http://dx.doi.org/10.1515/ntrev-2016-0081.
Der volle Inhalt der QuelleBrémaud, Erwan, Cyril Favard und Delphine Muriaux. „Deciphering the Assembly of Enveloped Viruses Using Model Lipid Membranes“. Membranes 12, Nr. 5 (19.04.2022): 441. http://dx.doi.org/10.3390/membranes12050441.
Der volle Inhalt der QuelleWrobel, Dominika, Dietmar Appelhans, Marco Signorelli, Brigitte Wiesner, Dimitrios Fessas, Ulrich Scheler, Brigitte Voit und Jan Maly. „Interaction study between maltose-modified PPI dendrimers and lipidic model membranes“. Biochimica et Biophysica Acta (BBA) - Biomembranes 1848, Nr. 7 (Juli 2015): 1490–501. http://dx.doi.org/10.1016/j.bbamem.2015.03.033.
Der volle Inhalt der QuelleCastelli, Francesco, Sebastiana Caruso und Nicola Uccella. „Biomimesis of Linolenic Acid Transport through Model Lipidic Membranes by Differential Scanning Calorimetry“. Journal of Agricultural and Food Chemistry 51, Nr. 4 (Februar 2003): 851–55. http://dx.doi.org/10.1021/jf020582z.
Der volle Inhalt der QuelleGallová, J., K. Želinská und P. Balgavý. „Partial molecular volumes of cholesterol and phosphatidylcholine in mixed bilayers“. European Pharmaceutical Journal 64, Nr. 2 (27.11.2017): 1–3. http://dx.doi.org/10.1515/afpuc-2017-0012.
Der volle Inhalt der QuelleParra, Elisa, Lara H. Moleiro, Ivan López-Montero, Antonio Cruz, Francisco Monroy und Jesús Pérez-Gil. „A combined action of pulmonary surfactant proteins SP-B and SP-C modulates permeability and dynamics of phospholipid membranes“. Biochemical Journal 438, Nr. 3 (26.08.2011): 555–64. http://dx.doi.org/10.1042/bj20110681.
Der volle Inhalt der QuelleTrombetta, Domenico, Francesco Castelli, Maria Grazia Sarpietro, Vincenza Venuti, Mariateresa Cristani, Claudia Daniele, Antonella Saija, Gabriela Mazzanti und Giuseppe Bisignano. „Mechanisms of Antibacterial Action of Three Monoterpenes“. Antimicrobial Agents and Chemotherapy 49, Nr. 6 (Juni 2005): 2474–78. http://dx.doi.org/10.1128/aac.49.6.2474-2478.2005.
Der volle Inhalt der QuelleCastanho, M. A. R. B., S. Lopes und M. Fernandes. „Using UV-Vis. Linear Dichroism to Study the Orientation of Molecular Probes and Biomolecules in Lipidic Membranes“. Spectroscopy 17, Nr. 2-3 (2003): 377–98. http://dx.doi.org/10.1155/2003/801452.
Der volle Inhalt der QuelleMori, Kenichi, Yosuke Imai, Tsubasa Takaoka, Koji Iwamoto, Hideyoshi Fuji und Tyuji Hoshino. „2P270 Database of Lipid Membrane Structures : Computational Analyses of Model Membranes(40. Membrane structure,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)“. Seibutsu Butsuri 46, supplement2 (2006): S363. http://dx.doi.org/10.2142/biophys.46.s363_2.
Der volle Inhalt der QuelleHan, Xu, Chih-Chia Su, Zhemin Zhang, Meinan Lyu, Edward Yu und Marvin T. Nieman. „Elucidating the Structural Dynamics of Integrin α IIbβ 3 from Native Platelet Membranes By Cryo-EM Coupled with Build and Retrieve Data Processing Methodology“. Blood 142, Supplement 1 (28.11.2023): 2559. http://dx.doi.org/10.1182/blood-2023-178888.
Der volle Inhalt der QuelleSpeziale, Chiara, Livia Salvati Manni, Cristina Manatschal, Ehud M. Landau und Raffaele Mezzenga. „A macroscopic H+and Cl−ions pump via reconstitution of EcClC membrane proteins in lipidic cubic mesophases“. Proceedings of the National Academy of Sciences 113, Nr. 27 (16.06.2016): 7491–96. http://dx.doi.org/10.1073/pnas.1603965113.
Der volle Inhalt der QuelleBlakeslee, Joshua J., Eun-Hyang Han, Yun Lin, Jinshan Lin, Seema Nath, Liwen Zhang, Zhenyu Li und Katrina Cornish. „Proteomic and Targeted Lipidomic Analyses of Fluid and Rigid Rubber Particle Membrane Domains in Guayule“. Plants 13, Nr. 21 (24.10.2024): 2970. http://dx.doi.org/10.3390/plants13212970.
Der volle Inhalt der QuelleBasañez, Gorka, Juanita C. Sharpe, Jennifer Galanis, Teresa B. Brandt, J. Marie Hardwick und Joshua Zimmerberg. „Bax-type Apoptotic Proteins Porate Pure Lipid Bilayers through a Mechanism Sensitive to Intrinsic Monolayer Curvature“. Journal of Biological Chemistry 277, Nr. 51 (14.10.2002): 49360–65. http://dx.doi.org/10.1074/jbc.m206069200.
Der volle Inhalt der QuelleSadchenko, A. O. „Correlations between molecular parameters of guest substances and their effect on model lipid membranes“. Functional materials 23, Nr. 2 (15.06.2016): 230–35. http://dx.doi.org/10.15407/fm23.02.230.
Der volle Inhalt der QuellePolovinkin, Vitaly, Krishna Khakurel, Michal Babiak, Borislav Angelov, Bohdan Schneider, Jan Dohnalek, Jakob Andreasson und Janos Hajdu. „Demonstration of electron diffraction from membrane protein crystals grown in a lipidic mesophase after lamella preparation by focused ion beam milling at cryogenic temperatures“. Journal of Applied Crystallography 53, Nr. 6 (13.10.2020): 1416–24. http://dx.doi.org/10.1107/s1600576720013096.
Der volle Inhalt der QuelleVashchenko, O. V. „Comparative effects of stearic acid, calcium and magnesium stearates as dopants in model lipid membranes“. Functional materials 25, Nr. 2 (27.06.2018): 300–307. http://dx.doi.org/10.15407/fm25.02.300.
Der volle Inhalt der QuelleANGELOV, BORISLAV. „PROTEIN NANODOMAIN PATTERNS IN LIPIDIC BICONTINUOUS CUBIC PHASES“. Modern Physics Letters B 16, Nr. 07 (20.03.2002): 225–30. http://dx.doi.org/10.1142/s0217984902003683.
Der volle Inhalt der QuelleLee, David B. N., Nora Jamgotchian, Suni G. Allen, Michael B. Abeles und Harry J. Ward. „A lipid-protein hybrid model for tight junction“. American Journal of Physiology-Renal Physiology 295, Nr. 6 (Dezember 2008): F1601—F1612. http://dx.doi.org/10.1152/ajprenal.00097.2008.
Der volle Inhalt der QuelleCort, Aysegul, Tomris Ozben, Anna Sansone, Sebastian Barata-Vallejo, Chryssostomos Chatgilialoglu und Carla Ferreri. „Bleomycin-induced trans lipid formation in cell membranes and in liposome models“. Organic & Biomolecular Chemistry 13, Nr. 4 (2015): 1100–1105. http://dx.doi.org/10.1039/c4ob01924e.
Der volle Inhalt der QuelleKehlenbeck, Dominique-Maurice, Inokentijs Josts, Julius Nitsche, Sebastian Busch, V. Trevor Forsyth und Henning Tidow. „Comparison of lipidic carrier systems for integral membrane proteins – MsbA as case study“. Biological Chemistry 400, Nr. 11 (26.11.2019): 1509–18. http://dx.doi.org/10.1515/hsz-2019-0171.
Der volle Inhalt der QuelleEssaid, Donia, Véronique Rosilio, Katia Daghildjian, Audrey Solgadi, Juliette Vergnaud, Athena Kasselouri und Pierre Chaminade. „Artificial plasma membrane models based on lipidomic profiling“. Biochimica et Biophysica Acta (BBA) - Biomembranes 1858, Nr. 11 (November 2016): 2725–36. http://dx.doi.org/10.1016/j.bbamem.2016.07.010.
Der volle Inhalt der QuellePušenjak, Rudolf, und Maks Oblak. „Simulacija akcijskega potenciala v Hodgkin-Huxleyevem modelu“. Anali PAZU 1, Nr. 2 (10.05.2022): 122–27. http://dx.doi.org/10.18690/analipazu.1.2.122-127.2011.
Der volle Inhalt der QuelleLee, JinKeun, und Barry R. Lentz. „Evolution of Lipidic Structures during Model Membrane Fusion and the Relation of This Process to Cell Membrane Fusion†“. Biochemistry 36, Nr. 21 (Mai 1997): 6251–59. http://dx.doi.org/10.1021/bi970404c.
Der volle Inhalt der QuelleRenno, Giacomo, Francesca Cardano, Giorgio Volpi, Claudia Barolo, Guido Viscardi und Andrea Fin. „Imidazo[1,5-a]pyridine-Based Fluorescent Probes: A Photophysical Investigation in Liposome Models“. Molecules 27, Nr. 12 (16.06.2022): 3856. http://dx.doi.org/10.3390/molecules27123856.
Der volle Inhalt der Quellede Souza Teixeira, Leonardo, Tatiana Vila Chagas, Antonio Alonso, Isabel Gonzalez-Alvarez, Marival Bermejo, James Polli und Kênnia Rocha Rezende. „Biomimetic Artificial Membrane Permeability Assay over Franz Cell Apparatus Using BCS Model Drugs“. Pharmaceutics 12, Nr. 10 (19.10.2020): 988. http://dx.doi.org/10.3390/pharmaceutics12100988.
Der volle Inhalt der QuelleYaghmur, Anan, Barbara Sartori und Michael Rappolt. „The role of calcium in membrane condensation and spontaneous curvature variations in model lipidic systems“. Phys. Chem. Chem. Phys. 13, Nr. 8 (2011): 3115–25. http://dx.doi.org/10.1039/c0cp01036g.
Der volle Inhalt der QuelleNomura, Kaoru, Gilles Ferrat, Terumi Nakajima, Herve Darbon, Takashi Iwashita und Gerardo Corzo. „S1h1-5 Interactions of two kinds of arthropods-derived antimicrobial peptides, pandinins and oxyopinins, with model lipid membranes(S1-h1 "Antimicrobial Peptides and Membrane Interactions",Symposia,Abstract,Meeting Program of EABS & BSJ 2006)“. Seibutsu Butsuri 46, supplement2 (2006): S113. http://dx.doi.org/10.2142/biophys.46.s113_3.
Der volle Inhalt der QuelleMorigaki, Kenichi. „S1e2-8 Micropatterned composite membranes of polymerized and fluid lipid bilayers as a versatile model cellular membrane(S1-e2: "New Biomembrane Model Systems, Giant Liposomes and Supported Planar Bilayers, for Probing Biomembrane Structure and Function, and Creation of De Novo Functional Membrane System",Symposia,Abstract,Meeting Program of EABS & BSJ 2006)“. Seibutsu Butsuri 46, supplement2 (2006): S118. http://dx.doi.org/10.2142/biophys.46.s118_4.
Der volle Inhalt der QuelleBorshchevskiy, Valentin, Rouslan Efremov, Ekaterina Moiseeva, Georg Büldt und Valentin Gordeliy. „Overcoming merohedral twinning in crystals of bacteriorhodopsin grown in lipidic mesophase“. Acta Crystallographica Section D Biological Crystallography 66, Nr. 1 (21.12.2009): 26–32. http://dx.doi.org/10.1107/s0907444909042838.
Der volle Inhalt der QuelleZatloukalova, Martina, Ewa Nazaruk und Renata Bilewicz. „Electrogenic transport of Na+/K+-ATPase incorporated in lipidic cubic phases as a model biomimetic membrane“. Electrochimica Acta 310 (Juli 2019): 113–21. http://dx.doi.org/10.1016/j.electacta.2019.04.082.
Der volle Inhalt der QuelleVandoolaeghe, Pauline, Adrian R. Rennie, Richard A. Campbell, Robert K. Thomas, Fredrik Höök, Giovanna Fragneto, Justas Barauskas, Fredrik Tiberg und Tommy Nylander. „The Delivery of Lipidic Compounds to Model Membrane Interfaces by Non-lamellar Liquid Crystalline Nano-particles“. Biophysical Journal 96, Nr. 3 (Februar 2009): 19a. http://dx.doi.org/10.1016/j.bpj.2008.12.1000.
Der volle Inhalt der QuelleIto, Koreaki, Naomi Shimokawa-Chiba und Shinobu Chiba. „Sec translocon has an insertase-like function in addition to polypeptide conduction through the channel“. F1000Research 8 (20.12.2019): 2126. http://dx.doi.org/10.12688/f1000research.21065.1.
Der volle Inhalt der QuelleVasco, Aldrin V., Martina Brode, Yanira Méndez, Oscar Valdés, Daniel G. Rivera und Ludger A. Wessjohann. „Synthesis of Lactam-Bridged and Lipidated Cyclo-Peptides as Promising Anti-Phytopathogenic Agents“. Molecules 25, Nr. 4 (13.02.2020): 811. http://dx.doi.org/10.3390/molecules25040811.
Der volle Inhalt der QuelleSILVA JUNIOR, IZAN M., MARIA CLÍCIA S. CASTRO, DILSON SILVA und CÉLIA M. CORTEZ. „Relevance of Hydrodynamic Effects for the Calculation of Outer Surface Potential of Biological Membrane Using Electrophoretic Data“. Anais da Academia Brasileira de Ciências 88, Nr. 2 (07.06.2016): 751–63. http://dx.doi.org/10.1590/0001-3765201620140530.
Der volle Inhalt der QuelleSunami, Takeshi, Kazufumi Hosoda, Hiroaki Suzuki, Tomoaki Matsuura und Tetsuya Yomo. „Cellular Compartment Model for Exploring the Effect of the Lipidic Membrane on the Kinetics of Encapsulated Biochemical Reactions“. Langmuir 26, Nr. 11 (Juni 2010): 8544–51. http://dx.doi.org/10.1021/la904569m.
Der volle Inhalt der QuelleTrampari, Sofia, Caroline Neumann, Samuel J. Hjorth-Jensen, Azadeh Shahsavar, Esben M. Quistgaard und Poul Nissen. „Insights into the mechanism of high lipid–detergent crystallization of membrane proteins“. Journal of Applied Crystallography 54, Nr. 6 (25.11.2021): 1775–83. http://dx.doi.org/10.1107/s1600576721010669.
Der volle Inhalt der QuelleBozzer, Sara, Michele Dal Bo, Giuseppe Toffoli, Paolo Macor und Sara Capolla. „Nanoparticles-Based Oligonucleotides Delivery in Cancer: Role of Zebrafish as Animal Model“. Pharmaceutics 13, Nr. 8 (21.07.2021): 1106. http://dx.doi.org/10.3390/pharmaceutics13081106.
Der volle Inhalt der QuelleCornell, Bruce A. „S1e2-5 Immunosensors based on Tethered Lipid Membranes(S1-e2: "New Biomembrane Model Systems, Giant Liposomes and Supported Planar Bilayers, for Probing Biomembrane Structure and Function, and Creation of De Novo Functional Membrane System",Symposia,Abstract,Meeting Program of EABS & BSJ 2006)“. Seibutsu Butsuri 46, supplement2 (2006): S118. http://dx.doi.org/10.2142/biophys.46.s118_1.
Der volle Inhalt der QuelleRomano, Eugenia, Paolo Antonio Netti und Enza Torino. „A High Throughput Approach Based on Dynamic High Pressure for the Encapsulation of Active Compounds in Exosomes for Precision Medicine“. International Journal of Molecular Sciences 22, Nr. 18 (13.09.2021): 9896. http://dx.doi.org/10.3390/ijms22189896.
Der volle Inhalt der QuelleTaniguchi, Emi, Katsuyuki Nishimura und Akira Naito. „1P346 Conformation and interaction of β-endorphin with a model membrane consisting of unsaturated lipid bilayers as studied by solid-state NMR(12. Membrane dynamics,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)“. Seibutsu Butsuri 46, supplement2 (2006): S233. http://dx.doi.org/10.2142/biophys.46.s233_2.
Der volle Inhalt der QuellePan, Dongqing, Ryo Oyama, Tomomi Sato, Takanori Nakane, Ryo Mizunuma, Keita Matsuoka, Yasumasa Joti et al. „Crystal structure of CmABCB1 multi-drug exporter in lipidic mesophase revealed by LCP-SFX“. IUCrJ 9, Nr. 1 (23.12.2021): 134–45. http://dx.doi.org/10.1107/s2052252521011611.
Der volle Inhalt der QuelleNakane, Takanori, Shinya Hanashima, Mamoru Suzuki, Haruka Saiki, Taichi Hayashi, Keisuke Kakinouchi, Shigeru Sugiyama et al. „Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent“. Proceedings of the National Academy of Sciences 113, Nr. 46 (31.10.2016): 13039–44. http://dx.doi.org/10.1073/pnas.1602531113.
Der volle Inhalt der QuelleTakagishi, Isao, Akira Yamagishi, Hiromitsu Nakazawa, Shingo Sakai, Shintaro Inoue und Satoru Kato. „2P282 Study on the Packing Structure of the Stratum Corneum Lipid Model by Electron Diffraction(40. Membrane structure,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)“. Seibutsu Butsuri 46, supplement2 (2006): S366. http://dx.doi.org/10.2142/biophys.46.s366_2.
Der volle Inhalt der QuelleGarcía-Jaramillo, Manuel, Kelli A. Lytle, Melinda H. Spooner und Donald B. Jump. „A Lipidomic Analysis of Docosahexaenoic Acid (22:6, ω3) Mediated Attenuation of Western Diet Induced Nonalcoholic Steatohepatitis in Male Ldlr -/- Mice“. Metabolites 9, Nr. 11 (28.10.2019): 252. http://dx.doi.org/10.3390/metabo9110252.
Der volle Inhalt der QuelleSánchez-Sánchez, Laura, Roberto Fernández, Maria Dolores Ganfornina, Egoitz Astigarraga und Gabriel Barreda-Gómez. „Protective Actions of α-Tocopherol on Cell Membrane Lipids of Paraquat-Stressed Human Astrocytes Using Microarray Technology, MALDI-MS and Lipidomic Analysis“. Antioxidants 11, Nr. 12 (10.12.2022): 2440. http://dx.doi.org/10.3390/antiox11122440.
Der volle Inhalt der QuelleLosada-Barreiro, Sonia, Fátima Paiva-Martins und Carlos Bravo-Díaz. „Partitioning of Antioxidants in Edible Oil–Water Binary Systems and in Oil-in-Water Emulsions“. Antioxidants 12, Nr. 4 (28.03.2023): 828. http://dx.doi.org/10.3390/antiox12040828.
Der volle Inhalt der QuelleSantana-Filho, Arquimedes Paixão, Aramís José Pereira, Letícia Adejani Laibida, Normanda Souza-Melo, Wanderson Duarte DaRocha und Guilherme Lanzi Sassaki. „Lipidomic Analysis Reveals Branched-Chain and Cyclic Fatty Acids from Angomonas deanei Grown under Different Nutritional and Physiological Conditions“. Molecules 29, Nr. 14 (17.07.2024): 3352. http://dx.doi.org/10.3390/molecules29143352.
Der volle Inhalt der QuelleGarikapati, Vannuruswamy, Claudia Colasante, Eveline Baumgart-Vogt und Bernhard Spengler. „Sequential lipidomic, metabolomic, and proteomic analyses of serum, liver, and heart tissue specimens from peroxisomal biogenesis factor 11α knockout mice“. Analytical and Bioanalytical Chemistry 414, Nr. 6 (27.01.2022): 2235–50. http://dx.doi.org/10.1007/s00216-021-03860-0.
Der volle Inhalt der QuelleZheng, Ping, Mengqian Shen, Ruoyu Liu, Xinkai Cai, Jinting Lin, Lulu Wang, Yu Chen, Guangwei Chen, Shijiang Cao und Yuan Qin. „Revealing Further Insights into Astringent Seeds of Chinese Fir by Integrated Metabolomic and Lipidomic Analyses“. International Journal of Molecular Sciences 24, Nr. 20 (12.10.2023): 15103. http://dx.doi.org/10.3390/ijms242015103.
Der volle Inhalt der Quelle