Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Linearizace systému“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Linearizace systému" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Linearizace systému"
Korobov, V. I. „Almost linearizable control systems“. Mathematics of Control, Signals, and Systems 33, Nr. 3 (15.05.2021): 473–97. http://dx.doi.org/10.1007/s00498-021-00288-w.
Der volle Inhalt der QuelleSastry, S. S., und A. Isidori. „Adaptive control of linearizable systems“. IEEE Transactions on Automatic Control 34, Nr. 11 (1989): 1123–31. http://dx.doi.org/10.1109/9.40741.
Der volle Inhalt der QuelleChetverikov, V. N. „Flatness of dynamically linearizable systems“. Differential Equations 40, Nr. 12 (Dezember 2004): 1747–56. http://dx.doi.org/10.1007/s10625-005-0106-5.
Der volle Inhalt der QuelleHirschorn, R. M. „Global Controllability of Locally Linearizable Systems“. SIAM Journal on Control and Optimization 28, Nr. 3 (März 1990): 540–51. http://dx.doi.org/10.1137/0328032.
Der volle Inhalt der QuelleAgafonov, S. I., E. V. Ferapontov und V. S. Novikov. „Quasilinear systems with linearizable characteristic webs“. Journal of Mathematical Physics 58, Nr. 7 (Juli 2017): 071506. http://dx.doi.org/10.1063/1.4994198.
Der volle Inhalt der QuelleBowong, S., und A. Temgoua Kagou. „Adaptive Control for Linearizable Chaotic Systems“. Journal of Vibration and Control 12, Nr. 2 (Februar 2006): 119–37. http://dx.doi.org/10.1177/1077546306059318.
Der volle Inhalt der QuelleHussien, Omar, Aaron Ames und Paulo Tabuada. „Abstracting Partially Feedback Linearizable Systems Compositionally“. IEEE Control Systems Letters 1, Nr. 2 (Oktober 2017): 227–32. http://dx.doi.org/10.1109/lcsys.2017.2713461.
Der volle Inhalt der QuelleMarino, R., W. M. Boothby und D. L. Elliott. „Geometric properties of linearizable control systems“. Mathematical Systems Theory 18, Nr. 1 (Dezember 1985): 97–123. http://dx.doi.org/10.1007/bf01699463.
Der volle Inhalt der QuelleDel Vecchio, D., R. Marino und P. Tomei. „Adaptive Learning Control for Feedback Linearizable Systems*“. European Journal of Control 9, Nr. 5 (Januar 2003): 483–96. http://dx.doi.org/10.3166/ejc.9.483-496.
Der volle Inhalt der QuelleMarino, R., und P. Tomei. „Self-Tuning Stabilization of Feedback Linearizable Systems“. IFAC Proceedings Volumes 25, Nr. 14 (Juli 1992): 95–100. http://dx.doi.org/10.1016/s1474-6670(17)50718-1.
Der volle Inhalt der QuelleDissertationen zum Thema "Linearizace systému"
Vlk, Jan. „Návrh a evaluace moderních systémů řízení letu“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445472.
Der volle Inhalt der QuelleWahbe, Andrew A. „Linearizable shared objects for asynchronous message passing systems“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0024/MQ50378.pdf.
Der volle Inhalt der QuelleRossoni, Priscila. „Fluxo de carga AC linearizado associado a ferramenta MATLAB“. reponame:Repositório Institucional da UFABC, 2016.
Den vollen Inhalt der Quelle findenDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia Elétrica, 2016.
Esta dissertação apresenta um estudo para sistemas de distribuição e transmissão de energia elétrica com Fluxo de Carga AC Linearizado (FCACL). Este estudo é baseado no Fluxo de Carga AC (FCAC) em que é realizada uma linearização nas equações de balanço das potências ativas e reativas utilizadas na modelagem original do FCAC. Ao contrário dos algoritmos de FCAC, esta técnica não requer um processo iterativo, o que resulta em uma metodologia rápida e robusta. O FCACL considera todos os acoplamentos do modelo tradicional de FCAC, tais como o acoplamento de potência ativa com os ângulos de fase e o acoplamento da potência reativa com as magnitudes de tensão, diferentemente do que ocorre no método tradicional de Fluxo de Carga DC (FCDC), que considera apenas a parte ativa do acoplamento. O método é adequado para estudos de contingência e de carregamento, e sendo indicado em situações em que há a necessidade de se obter soluções rápidas e repetidas. A grande vantagem é que o método não é iterativo e oferece soluções, mesmo quando FCAC tradicional diverge e apresenta mais precisão do que o FCDC. O método foi testado no sistema didático de transmissão de 3, 14, 30 e 118 barras e nos sistemas de distribuição de 34, 70 e 126 barras. Os resultados demonstram a eficácia do método. A metodologia proposta foi desenvolvida e implementada em ambiente Matlab®, de forma a compor a ferramenta computacional de análises de sistemas elétricos, a ANASEP. As soluções foram comparadas com os métodos de FCAC, FCDC e de Backward/Forward Sweep (BFS), estes dois últimos também uma contribuição para ferramenta que passará a ser identificada como ANASEP 2.0.
This dissertation presents a load flow method for electricity distribution and transmission system called AC Linearized Flow Power (LACLF). The method is based on the AC Load Flow (ACLF) which are held in the linearization equations of the Jacobian matrix. Unlike ACLF algorithm, this method does not require an iterative process, which results in a fast and robust method. The LACLF considers all the coupling ACLF, including the coupling of active power with the magnitude of voltage and reactive power coupling with the phase angle, different from the traditional DC load flow method (DCLF). The method is suitable for contingency studies and can be used when solutions quick, robust and repeatedly are requested. The big advantage is that the method is not iterative and offers solutions even where traditional ACLF diverges and more accurately than the DCLF. The method was applied to the distribution systems 34, 70 and 126 bus and applied to the transmission systems 3, 14, 30 and 118 bus. The partial results of the tests demonstrate the effectiveness of the methodology. The proposed methodology has been developed and implemented in Matlab® environment, in order to compose a computational tool for electrical system analysis, ANASEP. The solutions were compared with the methods of FCAC, FCDC and Backward / Forward Sweep (BFS), the latter two also a contribution to tool that had become identified as ANASEP 2.0.
Chen, Yahao. „Geometric analysis of differential-algebraic equations and control systems : linear, nonlinear and linearizable“. Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR04.
Der volle Inhalt der QuelleIn the first part of this thesis, we study linear differential-algebraic equations (shortly, DAEs) and linear control systems given by DAEs (shortly, DAECSs). The discussed problems and obtained results are summarized as follows. 1. Geometric connections between linear DAEs and linear ODE control systems ODECSs. We propose a procedure, named explicitation, to associate a linear ODECS to any linear DAE. The explicitation of a DAE is a class of ODECSs, or more precisely, an ODECS defined up to a coordinates change, a feedback transformation and an output injection. Then we compare the Wong sequences of a DAE with invariant subspaces of its explicitation. We prove that the basic canonical forms, the Kronecker canonical form KCF of linear DAEs and the Morse canonical form MCF of ODECSs, have a perfect correspondence and their invariants (indices and subspaces) are related. Furthermore, we define the internal equivalence of two DAEs and show its difference with the external equivalence by discussing their relations with internal regularity, i.e., the existence and uniqueness of solutions. 2. Transform a linear DAECS into its feedback canonical form via the explicitation with driving variables. We study connections between the feedback canonical form FBCF of DAE control systems DAECSs proposed in the literature and the famous Morse canonical form MCF of ODECSs. In order to connect DAECSs with ODECSs, we use a procedure named explicitation (with driving variables). This procedure attaches a class of ODECSs with two kinds of inputs (the original control input and the vector of driving variables) to a given DAECS. On the other hand, for classical linear ODECSs (without driving variables), we propose a Morse triangular form MTF to modify the construction of the classical MCF. Based on the MTF, we propose an extended MTF and an extended MCF for ODECSs with two kinds of inputs. Finally, an algorithm is proposed to transform a given DAECS into its FBCF. This algorithm is based on the extended MCF of an ODECS given by the explication procedure. Finally, a numerical example is given to show the structure and efficiency of the proposed algorithm. For nonlinear DAEs and DAECSs (of quasi-linear form), we study the following problems: 3. Explicitations, external and internal analysis, and normal forms of nonlinear DAEs. We generalize the two explicitation procedures (with or without driving variable) proposed in the linear case for nonlinear DAEs of quasi-linear form. The purpose of these two explicitation procedures is to associate a nonlinear ODECS to any nonlinear DAE such that we can use the classical nonlinear ODE control theory to analyze nonlinear DAEs. We discuss differences of internal and external equivalence of nonlinear DAEs by showing their relations with the existence and uniqueness of solutions (internal regularity). Then we show that the internal analysis of nonlinear DAEs is closely related to the zero dynamics in the classical nonlinear control theory. Moreover, we show relations of DAEs of pure semi-explicit form with the two explicitation procedures. Furthermore, a nonlinear generalization of the Weierstrass form WE is proposed based on the zero dynamics of a nonlinear ODECS given by the explicitation procedure
Resener, Mariana. „Modelo linearizado para problemas de planejamento da expansão de sistemas de distribuição“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/156487.
Der volle Inhalt der QuelleThis work presents a linearized model to be used in short-term expansion planning problems of power distribution systems (PDS) with distributed generation (DG). The steady state operation point is calculated through a linearized model of the network, being the loads and generators modeled as constant current injections, which makes it possible to calculate the branch currents and bus voltages through linear expressions. The alternatives considered for expansion are: (i) capacitor banks placement; (ii) voltage regulators placement; and (iii) reconductoring. Furthermore, the model considers the possibility of adjusting the taps of the distribution transformers as an alternative to reduce voltage violations. The flexibility of the model enables solutions that includes the contribution of DGs in the control of voltage and reactive power without the need to specify the substation voltage. The optimization model proposed to solve these problems uses a linear objective function, along with linear constraints, binary and continuous variables. Thus, the optimization model can be represented as a mixed integer linear programming problem (MILP) The objective function considers the minimization of the investment costs (acquisition, installation and removal of equipment and acquisition of conductors) and the operation costs, which corresponds to the annual maintenance cost plus the costs related to energy losses and violation of voltage limits. The load variation is represented by discrete load duration curves and the costs of losses and voltage violations are weighted by the duration of each load level. Using a MILP approach, it is known that there are sufficient conditions that guarantee the optimality of a given feasible solution, besides allowing the solution to be obtained by classical optimization methods. The proposed model was written in the programming language OPL and solved by the commercial solver CPLEX. The model was validated through the comparison of the results obtained for five distribution systems with the results obtained through conventional load flow. The analyzed cases and the obtained results show the accuracy of the proposed model and its potential for application.
Nowicki, Marcin. „Feedback linearization of mechanical control systems Geometry and flatness of m-crane systems A classification of feedback linearizable mechanical systems with 2 degrees of freedom“. Thesis, Normandie, 2020. http://www.theses.fr/2020NORMIR15.
Der volle Inhalt der QuelleThis thesis is devoted to a study of mechanical control systems, which are defined in local coordinates x = (x¹, . . . , xⁿ) on a smooth configuration manifold Q. They take the form of second-order differential equations¹ … where…are the Christoffel symbols corresponding to Coriolis and centrifugal terms, e(x) is an uncontrolled vector field on Q representing the influence of external positional forces acting on the system (e.g. gravitational or elasticity), and … are controlled vector fields in Q. Equivalently, a mechanical control system can be described by a first-order system on the tangent bundle TQ which is the state space of the system using coordinates (x,y) = (x¹, ..., xⁿ, y¹, ..., yⁿ) : … The main problem considered in this thesis is mechanical feedback linearization (shortly MF-linearization) by applying to the mechanical system the following transformations : (i) changes of coordinates given by diffeomorphisms … (ii) mechanical feedback transformations, denoted (α,β,γ), of the form … such that the transformed system is linear and mechanica
Dittrich, Petr. „Odhad Letových Parametrů Malého Letounu“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2017. http://www.nusl.cz/ntk/nusl-412582.
Der volle Inhalt der QuelleHoang, Trong bien. „Switched observers and input-delay compensation for anti-lock brake systems“. Phd thesis, Université Paris Sud - Paris XI, 2014. http://tel.archives-ouvertes.fr/tel-00994114.
Der volle Inhalt der QuelleTsao, Wen-Tzung, und 曹文宗. „Adaptive Control of Linearizable Discrete-Time Systems“. Thesis, 1994. http://ndltd.ncl.edu.tw/handle/71198784451994524775.
Der volle Inhalt der Quelle國立交通大學
控制工程系
82
The adaptive control of feedback linearizable discrete-time systems including SISO and MIMO cases with general relative degree is studied. The nonlinearities in the system are combinations of unknown linear parameters with known nonlinear functions. Although the unknown parameters appear linearly, the convergence result obtained is not global. The maximum allowable parameter error depends on the system characteristics and on the initial system states. Simulations show that the system diverges when the initial parameter error is too large. The thesis also uses feedback linearization techniques to control a chemical plant--the CSTR(continuous stirred tank reactor). The objective of the CSTR control is for the output values of the CSTR to track desired reference commands. The outputs will track the setpoints if the parameter error is not too large. Finally, we will give some studies about the implementation of the adaptive feedback linearization control on a inverse pendulum, and we will give some comparisons between adaptive feedback linearization control and PD control.
陳行智. „Sliding mode control of feedback linearizable six-degree-of-freedom flight system“. Thesis, 1992. http://ndltd.ncl.edu.tw/handle/79971976394984782759.
Der volle Inhalt der QuelleBücher zum Thema "Linearizace systému"
Wahbe, Andrew A. Linearizable shared objects for asynchronous message passing systems. 2000.
Den vollen Inhalt der Quelle findenLin, Zongli. Global and semi-global control problems for linear systems subject to input saturation and minimum-phase input-output linearizable systems. 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Linearizace systému"
Krstic, Miroslav. „Linearizable Strict-Feedforward Systems“. In Delay Compensation for Nonlinear, Adaptive, and PDE Systems, 217–31. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4877-0_13.
Der volle Inhalt der QuelleBoothby, William M. „Global Feedback Linearizability of Locally Linearizable Systems“. In Algebraic and Geometric Methods in Nonlinear Control Theory, 243–56. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4706-1_13.
Der volle Inhalt der QuelleSen, Soumya, Partha Ghosh und Agostino Cortesi. „Materialized View Construction Using Linearizable Nonlinear Regression“. In Advances in Intelligent Systems and Computing, 261–76. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2650-5_17.
Der volle Inhalt der QuelleGrammaticos, B., und A. Ramani. „Continuous and Discrete Linearizable Systems: The Riccati Saga“. In Algebraic Methods in Physics, 81–94. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0119-6_6.
Der volle Inhalt der QuelleDel Vecchio, Domitilla, Riccardo Marino und Patrizio Tomei. „Adaptive control of feedback linearizable systems by orthogonal approximation functions“. In Nonlinear control in the Year 2000, 341–53. London: Springer London, 2001. http://dx.doi.org/10.1007/bfb0110225.
Der volle Inhalt der QuelleJagannathan, S. „Discrete-Time Adaptive Fuzzy Logic Control of Feedback Linearizable Systems“. In Advances in Fuzzy Control, 225–61. Heidelberg: Physica-Verlag HD, 1998. http://dx.doi.org/10.1007/978-3-7908-1886-4_9.
Der volle Inhalt der QuelleNowicki, Marcin, und Witold Respondek. „A Classification of Feedback Linearizable Mechanical Systems with 2 Degrees of Freedom“. In Advances in Intelligent Systems and Computing, 638–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50936-1_54.
Der volle Inhalt der QuelleAlimhan, Keylan, und Naohisa Otsuka. „A Note on Practically Output Tracking Control of Nonlinear Systems That May Not Be Linearizable at the Origin“. In Communications in Computer and Information Science, 17–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-26010-0_3.
Der volle Inhalt der QuelleCharfeddine, Monia, Khalil Jouili und Naceur Benhadj Braiek. „Approximate Input-Output Feedback Linearization of Non-Minimum Phase System using Vanishing Perturbation Theory“. In Handbook of Research on Advanced Intelligent Control Engineering and Automation, 173–201. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-7248-2.ch006.
Der volle Inhalt der Quelle„Many-Body Systems in Ordinary (Three-Dimensional) Space: Solvable, Integrable, Linearizable Problems“. In Classical Many-Body Problems Amenable to Exact Treatments, 511–662. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44730-x_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Linearizace systému"
Cheng, Daizhan, und Hongsheng Qi. „Stabilization of Switched Linearizable Nonlinear Systems“. In Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. http://dx.doi.org/10.1109/cdc.2006.376960.
Der volle Inhalt der QuelleTall, Issa Amadou. „Linearizable feedforward systems: A special class“. In 2008 IEEE International Conference on Control Applications (CCA) part of the IEEE Multi-Conference on Systems and Control. IEEE, 2008. http://dx.doi.org/10.1109/cca.2008.4629662.
Der volle Inhalt der QuelleWillson, S. S., Philippe Müllhaupt und Dominique Bonvin. „Numerical algorithm for feedback linearizable systems“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756436.
Der volle Inhalt der QuellePrimbs, J. A., und V. Nevistic. „MPC extensions to feedback linearizable systems“. In Proceedings of 16th American CONTROL Conference. IEEE, 1997. http://dx.doi.org/10.1109/acc.1997.611055.
Der volle Inhalt der QuelleKrstic, M. „Feedforward systems linearizable by coordinate change“. In Proceedings of the 2004 American Control Conference. IEEE, 2004. http://dx.doi.org/10.23919/acc.2004.1383992.
Der volle Inhalt der QuelleMekhail, Matteo, und Stefano Battilotti. „Distributed estimation for feedback-linearizable nonlinear systems“. In 2016 European Control Conference (ECC). IEEE, 2016. http://dx.doi.org/10.1109/ecc.2016.7810669.
Der volle Inhalt der QuelleHaojian Xu, M. Mirmirani, P. A. Ioannou und H. R. Boussalis. „Robust adaptive sliding control of linearizable systems“. In Proceedings of American Control Conference. IEEE, 2001. http://dx.doi.org/10.1109/acc.2001.945662.
Der volle Inhalt der QuelleHunt, L. R., und Madanpal S. Verma. „Observers and Controllers for Feedback Linearizable Systems“. In 1991 American Control Conference. IEEE, 1991. http://dx.doi.org/10.23919/acc.1991.4791428.
Der volle Inhalt der QuelleAlvarez, Jesus, Rodolfo Suarez und Rafael Martinez. „Feedforward-Feedback Nonlinear Control for Linearizable Systems“. In 1991 American Control Conference. IEEE, 1991. http://dx.doi.org/10.23919/acc.1991.4791695.
Der volle Inhalt der QuelleXIE, W. F., und A. B. RAD. „FUZZY DIRECT ADAPTIVE CONTROL OF LINEARIZABLE SYSTEMS“. In Proceedings of the 2004 International Conference (CDIC '04). WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702289_0018.
Der volle Inhalt der Quelle