Auswahl der wissenschaftlichen Literatur zum Thema „Linear systems“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Linear systems" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Linear systems"

1

Ramadhan, Ayad M., und Adil K. Jabbar. „Invariable (2x2) Linear Systems“. Journal of Zankoy Sulaimani - Part A 5, Nr. 1 (10.03.2001): 51–56. http://dx.doi.org/10.17656/jzs.10089.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mazanik, S. A. „Linear differential Lappo-Danilevskii systems“. Mathematica Bohemica 127, Nr. 2 (2002): 275–82. http://dx.doi.org/10.21136/mb.2002.134159.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Došlý, Ondřej. „Phase matrix of linear differential systems“. Časopis pro pěstování matematiky 110, Nr. 2 (1985): 183–92. http://dx.doi.org/10.21136/cpm.1985.108587.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lobok, Oleksij, Boris Goncharenko, Larisa Vihrova und Marina Sych. „Synthesis of Modal Control of Multidimensional Linear Systems Using Linear Matrix Inequalities“. Collected Works of Kirovohrad National Technical University. Machinery in Agricultural Production, Industry Machine Building, Automation, Nr. 31 (2018): 141–50. http://dx.doi.org/10.32515/2409-9392.2018.31.141-150.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kaczorek, Tadeusz. „Inverse systems of linear systems“. Archives of Electrical Engineering 59, Nr. 3-4 (01.12.2010): 203–16. http://dx.doi.org/10.2478/s10171-010-0016-x.

Der volle Inhalt der Quelle
Annotation:
Inverse systems of linear systemsThe concept of inverse systems for standard and positive linear systems is introduced. Necessary and sufficient conditions for the existence of the positive inverse system for continuous-time and discrete-time linear systems are established. It is shown that: 1) The inverse system of continuous-time linear system is asymptotically stable if and only if the standard system is asymptotically stable. 2) The inverse system of discrete-time linear system is asymptotically stable if and only if the standard system is unstable. 3) The inverse system of continuous-time and discrete-time linear systems are reachable if and only if the standard systems are reachable. The considerations are illustrated by numerical examples.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

SUN, Xu-dong, und Si-zong GUO. „Linear Formed General Fuzzy Linear Systems“. Systems Engineering - Theory & Practice 29, Nr. 9 (September 2009): 92–98. http://dx.doi.org/10.1016/s1874-8651(10)60071-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Broomhead, D. S., J. P. Huke und M. R. Muldoon. „Linear Filters and Non-Linear Systems“. Journal of the Royal Statistical Society: Series B (Methodological) 54, Nr. 2 (Januar 1992): 373–82. http://dx.doi.org/10.1111/j.2517-6161.1992.tb01887.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gilmore, C. „Linear Dynamical Systems“. Irish Mathematical Society Bulletin 0086 (2020): 47–78. http://dx.doi.org/10.33232/bims.0086.47.78.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Giesbrecht, Mark, und David Saunders. „Parametric linear systems“. ACM SIGSAM Bulletin 31, Nr. 3 (September 1997): 40. http://dx.doi.org/10.1145/271130.271195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Conley, William. „Linear systems revisited“. SIMULATION 45, Nr. 1 (Juli 1985): 15–18. http://dx.doi.org/10.1177/003754978504500105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Linear systems"

1

Medina, Enrique A. „Linear Impulsive Control Systems: A Geometric Approach“. Ohio : Ohio University, 2007. http://www.ohiolink.edu/etd/view.cgi?ohiou1187704023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Belayneh, Berhanu Bekele. „Time-varying linear systems“. [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=98553530X.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mayo, Maldonado Jonathan. „Switched linear differential systems“. Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/383678/.

Der volle Inhalt der Quelle
Annotation:
In this thesis we study systems with switching dynamics and we propose new mathematical tools to analyse them. We show that the postulation of a global state space structure in current frameworks is restrictive and lead to potential difficulties that limit its use for the analysis of new emerging applications. In order to overcome such shortcomings, we reformulate the foundations in the study of switched systems by developing a trajectory-based approach, where we allow the use of models that are most suitable for the analysis of a each system. These models can involve sets of higher-order differential equations whose state space does not necessarily coincide. Based on this new approach, we first study closed switched systems, and we provide sufficient conditions for stability based on LMIs using the concept of multiple higher order Lyapunov function. We also study the role of positive-realness in stability of bimodal systems and we introduce the concept of positive-real completion. Furthermore, we study open switched systems by developing a dissipativity theory. We give necessary and sufficient conditions for dissipativity in terms of LMIs constructed from the coefficient matrices of the differential equations describing the modes. The relationship between dissipativity and stability is also discussed. Finally, we study the dynamics of energy distribution networks. We develop parsimonious models that deal effectively with the variant complexity of the network and the inherent switching phenomena induced by power converters. We also present the solution to instability problems caused by devices with negative impedance characteristics such as constant power loads, using tools developed in our framework.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Markovsky, Ivan. „Exact and approximate modeling of linear systems : a behavioral approach /“. Philadelphia, Pa. : Society for Industrial and Applied Mathematics, 2006. http://www.loc.gov/catdir/enhancements/fy0708/2005057537-d.html.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Xu, Rui Hui. „Windowed linear canonical transform and its applications“. Thesis, University of Macau, 2011. http://umaclib3.umac.mo/record=b2493220.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hopkins, Mark A. „Pseudo-linear identification: optimal joint parameter and state estimation of linear stochastic MIMO systems“. Diss., Virginia Polytechnic Institute and State University, 1988. http://hdl.handle.net/10919/53941.

Der volle Inhalt der Quelle
Annotation:
This dissertation presents a new method of simultaneous parameter and state estimation for linear, stochastic, discrete—time, multiple-input, multiple-output (MIMO) (B systems. This new method is called pseudo·Iinear identification (PLID), and extends an earlier method to the more general case where system input and output measurements are corrupted by noise. PLID can be applied to completely observable, completely controllable systems with known structure (i.e., known observability indexes) and unknown parameters. No assumptions on pole and zero locations are required; and no assumptions on relative degree are required, except that the system transfer functions must be strictly proper. Under standard gaussian assumptions on the various noises, for time-invariant systems in the class described above, it is proved that PLID is the optimal estimator (in the mean-square·error sense) of the states and the parameters, conditioned on the output measurements. It is also proved, under a reasonable assumption of persistent excitation, that the PLID parameter estimates converge a.e. to the true parameter values of the unknown system. For deterministic systems, it is proved that PLID exactly identifies the states and parameters in the minimum possible time, so—called deadbeat identification. The proof brings out an interesting relation between the estimate error propagation and the observability matrix of the time-varying extended system (the extended system incorporates the unknown parameters into the state vector). This relation gives rise to an intuitively appealing notion of persistent excitation. Some results of system identification simulations are presented. Several different cases are simulated, including a two-input, two-output system with non-minimum-phase zeros, and an unstable system. A comparison of PLID with the widely used extended Kalman filter is presented for a single-input, single·output system with near cancellation of a pole-zero pair. Results are also presented from simulations of the adaptive control of an unstable. two-input, two-output system In these simulations, PLID is used in a se1f—tuning regulator to identify the parameters needed to compute the feedback gain matrix, and (simultaneously) to estimate the system states, for the state feedback
Ph. D.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Newsham, Samantha. „Linear systems and determinants in integrable systems“. Thesis, Lancaster University, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.663238.

Der volle Inhalt der Quelle
Annotation:
The thesis concerns linear systems and scattering theory. In particular, it presents lineal' systems for some integrable systems and finds discrete analogues for many well known results for continuous variables. It introduces some new tools from linear systems and applies them to standard integrable systems. We begin by expressing the first Painleve equation as the compatibility condition of a certain Lax pair and introduce the Korteweg-de Vries partial differential equation. We introduce the spectral curve for algebraic families and the Toda lattice. The Fredholm determinant of a trace class Hankel integral operator gives rise to a tau function. Dyson used the tau function to solve an inverse spectral problem for Schrodinger operators. When a plane wave is subject to Schrodinger's equation and scattered by a potential u, the output is described at great distances by a scattering function. The spectral problem is to find the spectrum of Schrodinger's operator in L2 and hence the scattering function. The inverse spectral problem is to find the potential given the scattering function. The scattering and inverse scattering problems are linked by the Gelfand- Levitan equation. In this thesis, for a discrete linear system, we introduce a scattering function and Hankel matrix and a version of the Gelfand-Levitan equation for discrete linear systems. We introduce the discrete operator ∑∞/k=n AkBCAk and use it to solve the Gelfand-Levitan equation and compute Fredholm determinants of Hankel operators. We produce a discrete analogue of a calculation of Poppe giving a solution to the Korteweg-de Vries equation and via the methods of linear systems find an analogous solution in terms of Hankel matrices. We then produce a discrete analogue of the Miura transform. Thus the main new contributions of this thesis are the discrete analogues of the R operator, the Gelfand- Levitan equation, the Lyapunov equation and the Miura transform.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Enqvist, Martin. „Linear Models of Nonlinear Systems“. Doctoral thesis, Linköping : Linköpings universitet, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5330.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Marinosson, Sigurdur Freyr. „Stability Analysis of Nonlinear Systems with Linear Programming - Stabilitätsanalyse nicht-linearer Systeme mit linearer Optimierung“. Gerhard-Mercator-Universitaet Duisburg, 2002. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-02152002-111745/.

Der volle Inhalt der Quelle
Annotation:
In this thesis the stability and the region of attraction of nonlinear dynamical systems' equilibrium points are considered. Methods from linear programming are combined with theorems from the Lyapunov theory of dynamical systems to develop numerical algorithms. These algorithms deliver non-trivial information about the stability-behaviour of an equilibrium of a continuous, autonomous, nonlinear system. Two linear programs, LP1 and LP2, are developed. LP1 depends on a simply connected open neighborhood N of the equilibrium at the origin and two constants, a and m. The construction of LP1 implies that if it does not possess a feasible solution, then the corresponding system is not a,m-exponentially stable on N. LP2 has the property that every feasible solution of the linear program defines a piecewise-affine (piecewise-linear) Lyapunov function or a Lyapunov-like function V for the system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Haddleton, Steven W. „Steady-state performance of discrete linear time-invariant systems /“. Online version of thesis, 1994. http://hdl.handle.net/1850/11795.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Linear systems"

1

Bourlès, Henri. Linear Systems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118619988.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bhattacharyya, S. P., L. H. Keel und D. N. Mohsenizadeh. Linear Systems. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1641-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Blower, Gordon. Linear Systems. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-21240-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bourles, Henri. Linear systems. London, UK: ISTE ; Hoboken, NJ : Wiley, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Antsaklis, Panos J. Linear systems. New York: McGraw-Hill, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tripathi, A. N. Linear systems analysis. 2. Aufl. New Delhi: New Age International, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Neff, Herbert P. Continuous and discrete linear systems. Malabar, Fla: Krieger Pub. Co., 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sarachik, Philip E. Principles of linear systems. Cambridge: Cambridge University Press, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sarachik, Philip E. Principles of linear systems. New York: Cambridge University Press, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Staffans, Olof J. Well-posed linear systems. Cambridge, UK: Cambridge University Press, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Linear systems"

1

Robbiano, Lorenzo. „Coordinate Systems“. In Linear algebra, 81–108. Milano: Springer Milan, 2011. http://dx.doi.org/10.1007/978-88-470-1839-6_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Han, Xiaoying, und Peter Kloeden. „Linear Systems“. In SpringerBriefs in Mathematics, 35–39. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61934-7_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Feintuch, Avraham. „Linear Systems“. In Robust Control Theory in Hilbert Space, 77–86. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0591-3_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kress, Rainer. „Linear Systems“. In Graduate Texts in Mathematics, 5–24. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0599-9_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Fieguth, Paul. „Linear Systems“. In An Introduction to Complex Systems, 67–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44606-6_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Arrowsmith, D. K., und C. M. Place. „Linear systems“. In Dynamical Systems, 35–70. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2388-4_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Quarteroni, Alfio, und Fausto Saleri. „Linear systems“. In Texts in Computational Science and Engineering, 123–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-32613-8_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fuhrmann, Paul A., und Uwe Helmke. „Linear Systems“. In The Mathematics of Networks of Linear Systems, 141–206. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16646-9_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mumford, David. „Linear Systems“. In Algebraic Geometry I Complex Projective Varieties, 96–126. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-61833-8_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Perko, Lawrence. „Linear Systems“. In Texts in Applied Mathematics, 1–63. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0003-8_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Linear systems"

1

D'Antona, Gabriele, Antonello Monti und Ferdinanda Ponci. „A Decentralized State Estimator for Non-Linear Electric Power Systems“. In 2007 1st Annual IEEE Systems Conference. IEEE, 2007. http://dx.doi.org/10.1109/systems.2007.374680.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cohen, Leon. „Linear invariant systems“. In Optical Engineering + Applications, herausgegeben von Franklin T. Luk. SPIE, 2007. http://dx.doi.org/10.1117/12.740184.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Weiss, G., und R. Rebarber. „Estimatable linear systems“. In 1997 European Control Conference (ECC). IEEE, 1997. http://dx.doi.org/10.23919/ecc.1997.7082556.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

„Linear dynamically varying versus jump linear systems“. In Proceedings of the 1999 American Control Conference. IEEE, 1999. http://dx.doi.org/10.1109/acc.1999.786290.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dautrebande, N., und G. Bastin. „Positive linear observers for positive linear systems“. In 1999 European Control Conference (ECC). IEEE, 1999. http://dx.doi.org/10.23919/ecc.1999.7099454.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Borukhov, V., und O. Kvetko. „Applications of linear relations in linear systems theory“. In The Fourth International Workshop on Multidimensional Systems - NDS 2005. IEEE, 2005. http://dx.doi.org/10.1109/nds.2005.195332.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Johnson, Timothy. „Synchronous switched linear systems“. In 1985 24th IEEE Conference on Decision and Control. IEEE, 1985. http://dx.doi.org/10.1109/cdc.1985.268824.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Willems, Jan C. „Representations of linear systems“. In 2008 3rd International Symposium on Communications, Control and Signal Processing (ISCCSP). IEEE, 2008. http://dx.doi.org/10.1109/isccsp.2008.4537213.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

„MOMENT-LINEAR STOCHASTIC SYSTEMS“. In First International Conference on Informatics in Control, Automation and Robotics. SciTePress - Science and and Technology Publications, 2004. http://dx.doi.org/10.5220/0001143401900197.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Clotet, Josep, Josep Ferrer und M. Dolors Magret. „Switched singular linear systems“. In 2009 17th Mediterranean Conference on Control and Automation (MED). IEEE, 2009. http://dx.doi.org/10.1109/med.2009.5164733.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Linear systems"

1

Sameh, Ahmed H. Solving Linear Systems on Multiprocessors. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada200741.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Author, Not Given. Feedback Systems for Linear Colliders. Office of Scientific and Technical Information (OSTI), April 1999. http://dx.doi.org/10.2172/10004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Subasi, Yigit. Quantum Linear Systems Problem [Slides]. Office of Scientific and Technical Information (OSTI), Mai 2021. http://dx.doi.org/10.2172/1785467.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Raubenheimer, Tor. Final Focus Systems in Linear Colliders. Office of Scientific and Technical Information (OSTI), Dezember 1998. http://dx.doi.org/10.2172/9937.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Beiu, Andrea-Claudia, Roxana-Mariana Beiu und Valeriu Beiu. Optimal design of linear consecutive systems. Peeref, März 2023. http://dx.doi.org/10.54985/peeref.2303p3503376.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Young, D. M., und D. R. Kincaid. Linear stationary second-degree methods for the solution of large linear systems. Office of Scientific and Technical Information (OSTI), Juli 1990. http://dx.doi.org/10.2172/674848.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sontag, Eduardo D. Regulation of Nonlinear and Generalized Linear Systems. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada207725.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Merminga, N., J. Irwin, R. Helm und R. D. Ruth. Collimation Systems for a TeV Linear Collider. Office of Scientific and Technical Information (OSTI), Mai 1994. http://dx.doi.org/10.2172/1449133.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Morse, A. S. Adaptive Stabilization of Linear and Nonlinear Systems. Fort Belvoir, VA: Defense Technical Information Center, März 1994. http://dx.doi.org/10.21236/ada278270.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

McKeague, Ian W., und Tiziano Tofoni. Nonparametric Estimation of Trends in Linear Stochastic Systems. Fort Belvoir, VA: Defense Technical Information Center, September 1989. http://dx.doi.org/10.21236/ada213741.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie