Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Linear programming“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Linear programming" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Linear programming"
S. Mohan, S. Mohan, und Dr S. Sekar Dr. S. Sekar. „Linear Programming Problem with Homogeneous Constraints“. Indian Journal of Applied Research 4, Nr. 3 (01.10.2011): 298–307. http://dx.doi.org/10.15373/2249555x/mar2014/90.
Der volle Inhalt der QuelleD, Sempavazhaam, Jothi K und Kamali S. Nandhini A. Princy Rebekah J. „A Study on Linear Programming Problem“. International Journal of Trend in Scientific Research and Development Volume-3, Issue-2 (28.02.2019): 903–4. http://dx.doi.org/10.31142/ijtsrd21539.
Der volle Inhalt der QuelleMahjoub Mohammed Hussein, Elfarazdag. „Application of Linear Programming (Transportation Problem)“. International Journal of Science and Research (IJSR) 12, Nr. 3 (05.03.2023): 452–54. http://dx.doi.org/10.21275/sr21222020051.
Der volle Inhalt der QuelleAsquith, J., und Vasek Chvatal. „Linear Programming“. Mathematical Gazette 69, Nr. 448 (Juni 1985): 151. http://dx.doi.org/10.2307/3616957.
Der volle Inhalt der QuelleCaoimh, C. C. O., und Howard Karloff. „Linear Programming“. Mathematical Gazette 79, Nr. 484 (März 1995): 245. http://dx.doi.org/10.2307/3620128.
Der volle Inhalt der QuelleDantzig, George B. „Linear Programming“. Operations Research 50, Nr. 1 (Februar 2002): 42–47. http://dx.doi.org/10.1287/opre.50.1.42.17798.
Der volle Inhalt der QuelleŘímánek, Josef. „Linear programming“. European Journal of Operational Research 21, Nr. 2 (August 1985): 277–78. http://dx.doi.org/10.1016/0377-2217(85)90046-3.
Der volle Inhalt der QuelleQi, Zhiquan, Yingjie Tian und Yong Shi. „Regularized Multiple Criteria Linear Programming via Linear Programming“. Procedia Computer Science 9 (2012): 1234–39. http://dx.doi.org/10.1016/j.procs.2012.04.134.
Der volle Inhalt der QuelleDangerfield, Janet, und B. D. Bunday. „Basic Linear Programming“. Mathematical Gazette 69, Nr. 450 (Dezember 1985): 317. http://dx.doi.org/10.2307/3617607.
Der volle Inhalt der QuelleMegiddo, N. „Linear Programming (1986)“. Annual Review of Computer Science 2, Nr. 1 (Juni 1987): 119–45. http://dx.doi.org/10.1146/annurev.cs.02.060187.001003.
Der volle Inhalt der QuelleDissertationen zum Thema "Linear programming"
Andreotti, Sandro [Verfasser]. „Linear Programming and Integer Linear Programming in Bioinformatics / Sandro Andreotti“. Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1066645213/34.
Der volle Inhalt der QuelleSarrabezolles, Pauline. „Colourful linear programming“. Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1033/document.
Der volle Inhalt der QuelleThe colorful Carathéodory theorem, proved by Bárány in 1982, states the following. Given d Å1 sets of points S1, . . . ,SdÅ1 µ Rd , each of them containing 0 in its convex hull, there exists a colorful set T containing 0 in its convex hull, i.e. a set T µ SdÅ1 iÆ1 Si such that jT \Si j • 1 for all i and such that 0 2 conv(T ). This result gave birth to several questions, some algorithmic and some more combinatorial. This thesis provides answers on both aspects. The algorithmic questions raised by the colorful Carathéodory theorem concern, among other things, the complexity of finding a colorful set under the condition of the theorem, and more generally of deciding whether there exists such a colorful set when the condition is not satisfied. In 1997, Bárány and Onn defined colorful linear programming as algorithmic questions related to the colorful Carathéodory theorem. The two questions we just mentioned come under colorful linear programming. This thesis aims at determining which are the polynomial cases of colorful linear programming and which are the harder ones. New complexity results are obtained, refining the sets of undetermined cases. In particular, we discuss some combinatorial versions of the colorful Carathéodory theorem from an algorithmic point of view. Furthermore, we show that computing a Nash equilibrium in a bimatrix game is polynomially reducible to a colorful linear programming problem. On our track, we found a new way to prove that a complementarity problem belongs to the PPAD class with the help of Sperner’s lemma. Finally, we present a variant of the “Bárány-Onn” algorithm, which is an algorithmcomputing a colorful set T containing 0 in its convex hull whose existence is ensured by the colorful Carathéodory theorem. Our algorithm makes a clear connection with the simplex algorithm. After a slight modification, it also coincides with the Lemke method, which computes a Nash equilibriumin a bimatrix game. The combinatorial question raised by the colorful Carathéodory theorem concerns the number of positively dependent colorful sets. Deza, Huang, Stephen, and Terlaky (Colourful simplicial depth, Discrete Comput. Geom., 35, 597–604 (2006)) conjectured that, when jSi j Æ d Å1 for all i 2 {1, . . . ,d Å1}, there are always at least d2Å1 colourful sets containing 0 in their convex hulls. We prove this conjecture with the help of combinatorial objects, known as the octahedral systems. Moreover, we provide a thorough study of these objects
Espinoza, Daniel G. „On Linear Programming, Integer Programming and Cutting Planes“. Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10482.
Der volle Inhalt der QuelleWei, Hua. „Numerical Stability in Linear Programming and Semidefinite Programming“. Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2922.
Der volle Inhalt der QuelleWe start with the error bound analysis of the search directions for the normal equation approach for LP. Our error analysis explains the surprising fact that the ill-conditioning is not a significant problem for the normal equation system. We also explain why most of the popular LP solvers have a default stop tolerance of only 10-8 when the machine precision on a 32-bit computer is approximately 10-16.
We then propose a simple alternative approach for the normal equation based interior-point method. This approach has better numerical stability than the normal equation based method. Although, our approach is not competitive in terms of CPU time for the NETLIB problem set, we do obtain higher accuracy. In addition, we obtain significantly smaller CPU times compared to the normal equation based direct solver, when we solve well-conditioned, huge, and sparse problems by using our iterative based linear solver. Additional techniques discussed are: crossover; purification step; and no backtracking.
Finally, we present an algorithm to construct SDP problem instances with prescribed strict complementarity gaps. We then introduce two measures of strict complementarity gaps. We empirically show that: (i) these measures can be evaluated accurately; (ii) the size of the strict complementarity gaps correlate well with the number of iteration for the SDPT3 solver, as well as with the local asymptotic convergence rate; and (iii) large strict complementarity gaps, coupled with the failure of Slater's condition, correlate well with loss of accuracy in the solutions. In addition, the numerical tests show that there is no correlation between the strict complementarity gaps and the geometrical measure used in [31], or with Renegar's condition number.
Wolf, Jan [Verfasser]. „Quantified Linear Programming / Jan Wolf“. Aachen : Shaker, 2015. http://d-nb.info/1074087275/34.
Der volle Inhalt der QuelleSjöström, Henrik. „Pivoting methods for linear programming“. Thesis, KTH, Matematik (Inst.), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-98977.
Der volle Inhalt der QuellePrice, C. J. „Non-linear semi-infinite programming“. Thesis, University of Canterbury. Mathematics and Statistics, 1992. http://hdl.handle.net/10092/7920.
Der volle Inhalt der QuelleWu, S. Y. „Linear programming on measure spaces“. Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372925.
Der volle Inhalt der QuelleDIAS, DOUGLAS MOTA. „QUANTUM-INSPIRED LINEAR GENETIC PROGRAMMING“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=17544@1.
Der volle Inhalt der QuelleA superioridade de desempenho dos algoritmos quânticos, em alguns problemas específicos, reside no uso direto de fenômenos da mecânica quântica para realizar operações com dados em computadores quânticos. Esta característica fez surgir uma nova abordagem, denominada Computação com Inspiração Quântica, cujo objetivo é criar algoritmos clássicos (executados em computadores clássicos) que tirem proveito de princípios da mecânica quântica para melhorar seu desempenho. Neste sentido, alguns algoritmos evolutivos com inspiração quântica tem sido propostos e aplicados com sucesso em problemas de otimização combinatória e numérica, apresentando desempenho superior àquele dos algoritmos evolutivos convencionais, quanto à melhoria da qualidade das soluções e à redução do número de avaliações necessárias para alcançá-las. Até o presente momento, no entanto, este novo paradigma de inspiração quântica ainda não havia sido aplicado à Programação Genética (PG), uma classe de algoritmos evolutivos que visa à síntese automática de programas de computador. Esta tese propõe, desenvolve e testa um novo modelo de algoritmo evolutivo com inspiração quântica, denominado Programação Genética Linear com Inspiração Quântica (PGLIQ), para a evolução de programas em código de máquina. A Programação Genética Linear é assim denominada porque cada um dos seus indivíduos é representado por uma lista de instruções (estruturas lineares), as quais são executadas sequencialmente. As contribuições deste trabalho são o estudo e a formulação inédita do uso do paradigma da inspiração quântica na síntese evolutiva de programas de computador. Uma das motivações para a opção pela evolução de programas em código de máquina é que esta é a abordagem de PG que, por oferecer a maior velocidade de execução, viabiliza experimentos em larga escala. O modelo proposto é inspirado em sistemas quânticos multiníveis e utiliza o qudit como unidade básica de informação quântica, o qual representa a superposição dos estados de um sistema deste tipo. O funcionamento do modelo se baseia em indivíduos quânticos, que representam a superposição de todos os programas do espaço de busca, cuja observação gera indivíduos clássicos e os programas (soluções). Nos testes são utilizados problemas de regressão simbólica e de classificação binária para se avaliar o desempenho da PGLIQ e compará-lo com o do modelo AIMGP (Automatic Induction of Machine Code by Genetic Programming), considerado atualmente o modelo de PG mais eficiente na evolução de código de máquina, conforme citado em inúmeras referências bibliográficas na área. Os resultados mostram que a Programação Genética Linear com Inspiração Quântica (PGLIQ) apresenta desempenho geral superior nestas classes de problemas, ao encontrar melhores soluções (menores erros) a partir de um número menor de avaliações, com a vantagem adicional de utilizar um número menor de parâmetros e operadores que o modelo de referência. Nos testes comparativos, o modelo mostra desempenho médio superior ao do modelo de referência para todos os estudos de caso, obtendo erros de 3 a 31% menores nos problemas de regressão simbólica, e de 36 a 39% nos problemas de classificação binária. Esta pesquisa conclui que o paradigma da inspiração quântica pode ser uma abordagem competitiva para se evoluir programas eficientemente, encorajando o aprimoramento e a extensão do modelo aqui apresentado, assim como a criação de outros modelos de programação genética com inspiração quântica.
The superior performance of quantum algorithms in some specific problems lies in the direct use of quantum mechanics phenomena to perform operations with data on quantum computers. This feature has originated a new approach, named Quantum-Inspired Computing, whose goal is to create classic algorithms (running on classical computers) that take advantage of quantum mechanics principles to improve their performance. In this sense, some quantum-inspired evolutionary algorithms have been proposed and successfully applied in combinatorial and numerical optimization problems, presenting a superior performance to that of conventional evolutionary algorithms, by improving the quality of solutions and reducing the number of evaluations needed to achieve them. To date, however, this new paradigm of quantum inspiration had not yet been applied to Genetic Programming (GP), a class of evolutionary algorithms that aims the automatic synthesis of computer programs. This thesis proposes, develops and tests a novel model of quantum-inspired evolutionary algorithm named Quantum-Inspired Linear Genetic Programming (QILGP) for the evolution of machine code programs. Linear Genetic Programming is so named because each of its individuals is represented by a list of instructions (linear structures), which are sequentially executed. The contributions of this work are the study and formulation of the novel use of quantum inspiration paradigm on evolutionary synthesis of computer programs. One of the motivations for choosing by the evolution of machine code programs is because this is the GP approach that, by offering the highest speed of execution, makes feasible large-scale experiments. The proposed model is inspired on multi-level quantum systems and uses the qudit as the basic unit of quantum information, which represents the superposition of states of such a system. The model’s operation is based on quantum individuals, which represent a superposition of all programs of the search space, whose observation leads to classical individuals and programs (solutions). The tests use symbolic regression and binary classification problems to evaluate the performance of QILGP and compare it with the AIMGP model (Automatic Induction of Machine Code by Genetic Programming), which is currently considered the most efficient GP model to evolve machine code, as cited in numerous references in this field. The results show that Quantum-Inspired Linear Genetic Programming (QILGP) presents superior overall performance in these classes of problems, by achieving better solutions (smallest error) from a smaller number of evaluations, with the additional advantage of using a smaller number of parameters and operators that the reference model. In comparative tests, the model shows average performance higher than that of the reference model for all case studies, achieving errors 3-31% lower in the problems of symbolic regression, and 36-39% in the binary classification problems. This research concludes that the quantum inspiration paradigm can be a competitive approach to efficiently evolve programs, encouraging the improvement and extension of the model presented here, as well as the creation of other models of quantum-inspired genetic programming.
Ramadan, Khaled Carleton University Dissertation Mathematics and Statistics. „Linear programming with interval coefficients“. Ottawa, 1996.
Den vollen Inhalt der Quelle findenBücher zum Thema "Linear programming"
Darst, Richard B. Introduction to linear programming: Applications and extensions. New York: M. Dekker, 1991.
Den vollen Inhalt der Quelle findenKarloff, Howard. Linear Programming. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-0-8176-4844-2.
Der volle Inhalt der QuelleSaigal, Romesh. Linear Programming. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2311-6.
Der volle Inhalt der QuelleVanderbei, Robert J. Linear Programming. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39415-8.
Der volle Inhalt der QuelleVanderbei, Robert J. Linear Programming. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-1-4614-7630-6.
Der volle Inhalt der QuelleVanderbei, Robert J. Linear Programming. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-5662-3.
Der volle Inhalt der QuelleVanderbei, Robert J. Linear Programming. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-74388-2.
Der volle Inhalt der QuelleIgnizio, James P. Linear programming. Englewood Cliffs, N.J: Prentice Hall, 1994.
Den vollen Inhalt der Quelle findenWisniewski, Mik. Linear programming. Basingstoke: Palgrave, 2001.
Den vollen Inhalt der Quelle findenFeiring, Bruce. Linear Programming. 2455 Teller Road, Thousand Oaks California 91320 United States of America: SAGE Publications, Inc., 1986. http://dx.doi.org/10.4135/9781412984751.
Der volle Inhalt der QuelleBuchteile zum Thema "Linear programming"
Luc, Dinh The. „Linear Programming“. In Multiobjective Linear Programming, 49–82. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21091-9_3.
Der volle Inhalt der QuelleBhatti, M. Asghar. „Linear Programming“. In Practical Optimization Methods, 315–436. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0501-2_6.
Der volle Inhalt der QuelleBlum, Lenore, Felipe Cucker, Michael Shub und Steve Smale. „Linear Programming“. In Complexity and Real Computation, 275–96. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0701-6_15.
Der volle Inhalt der QuellePoler, Raúl, Josefa Mula und Manuel Díaz-Madroñero. „Linear Programming“. In Operations Research Problems, 1–48. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5577-5_1.
Der volle Inhalt der QuelleHolden, K., und A. W. Pearson. „Linear Programming“. In Introductory Mathematics for Economics and Business, 297–318. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-22357-2_8.
Der volle Inhalt der QuelleČepin, Marko. „Linear Programming“. In Assessment of Power System Reliability, 249–52. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-688-7_16.
Der volle Inhalt der QuelleShimizu, Kiyotaka, Yo Ishizuka und Jonathan F. Bard. „Linear Programming“. In Nondifferentiable and Two-Level Mathematical Programming, 128–87. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6305-1_5.
Der volle Inhalt der QuelleDiwekar, Urmila. „Linear Programming“. In Introduction to Applied Optimization, 1–29. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-76635-5_2.
Der volle Inhalt der QuelleFlorenzano, Monique, und Cuong Le Van. „Linear Programming“. In Studies in Economic Theory, 51–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56522-9_4.
Der volle Inhalt der QuelleWoodford, C., und C. Phillips. „Linear Programming“. In Numerical Methods with Worked Examples: Matlab Edition, 135–67. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-1366-6_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Linear programming"
Flanagan, Mark F. „Linear-programming receivers“. In 2008 46th Annual Allerton Conference on Communication, Control, and Computing. IEEE, 2008. http://dx.doi.org/10.1109/allerton.2008.4797568.
Der volle Inhalt der QuelleXu, Zhiming, Yu Bai und Shuning Wang. „Sequential Global Linear Programming Algorithm for Continuous Piecewise Linear Programming*“. In 2018 13th World Congress on Intelligent Control and Automation (WCICA). IEEE, 2018. http://dx.doi.org/10.1109/wcica.2018.8630336.
Der volle Inhalt der QuellePaolini, Luca, und Mauro Piccolo. „Semantically linear programming languages“. In the 10th international ACM SIGPLAN symposium. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1389449.1389462.
Der volle Inhalt der QuelleVaidya, Jaideep. „Privacy-preserving linear programming“. In the 2009 ACM symposium. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1529282.1529729.
Der volle Inhalt der QuelleTaghavi, Mohammad, und Paul Siegel. „Adaptive Linear Programming Decoding“. In 2006 IEEE International Symposium on Information Theory. IEEE, 2006. http://dx.doi.org/10.1109/isit.2006.262071.
Der volle Inhalt der QuelleRamos, Edgar A. „Linear programming queries revisited“. In the sixteenth annual symposium. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/336154.336198.
Der volle Inhalt der QuelleYang, Jihui. „Fuzzy relation linear programming“. In 2009 IEEE International Conference on Granular Computing (GRC). IEEE, 2009. http://dx.doi.org/10.1109/grc.2009.5255037.
Der volle Inhalt der QuelleGhosh, Arka, Piotr Hofman und Sławomir Lasota. „Orbit-finite linear programming“. In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2023. http://dx.doi.org/10.1109/lics56636.2023.10175799.
Der volle Inhalt der QuellePapadimitriou, Christos H., und Mihalis Yannakakis. „Linear programming without the matrix“. In the twenty-fifth annual ACM symposium. New York, New York, USA: ACM Press, 1993. http://dx.doi.org/10.1145/167088.167127.
Der volle Inhalt der QuelleSyed, Umar, Michael Bowling und Robert E. Schapire. „Apprenticeship learning using linear programming“. In the 25th international conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1390156.1390286.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Linear programming"
Bixby, Robert E. Linear Programming Tools for Integer Programming. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1989. http://dx.doi.org/10.21236/ada219013.
Der volle Inhalt der QuelleBixby, Robert. Linear-Programming Tools in Integer Programming: The Traveling Salesman. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1992. http://dx.doi.org/10.21236/ada261398.
Der volle Inhalt der QuelleKlotz, Edward S. Dynamic Pricing Criteria in Linear Programming. Fort Belvoir, VA: Defense Technical Information Center, Juli 1988. http://dx.doi.org/10.21236/ada198945.
Der volle Inhalt der QuelleQuinn, J. J., R. L. Johnson und L. A. Durham. Optimized groundwater containment using linear programming. Office of Scientific and Technical Information (OSTI), Juli 1998. http://dx.doi.org/10.2172/656456.
Der volle Inhalt der QuelleGill, Philip E., Walter Murray, Dulce B. Ponceleon und Michael A. Saunders. Primal-Dual Methods for Linear Programming. Fort Belvoir, VA: Defense Technical Information Center, Mai 1991. http://dx.doi.org/10.21236/ada237418.
Der volle Inhalt der QuelleEbeida, Mohamed, Ahmed Abdelkader, Nina Amenta, Drew Kouri, Ojas Parekh, Cynthia Phillips und Nickolas Winovich. Novel Geometric Operations for Linear Programming. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1813669.
Der volle Inhalt der QuelleGearhart, Jared Lee, Kristin Lynn Adair, Justin David Durfee, Katherine A. Jones, Nathaniel Martin und Richard Joseph Detry. Comparison of open-source linear programming solvers. Office of Scientific and Technical Information (OSTI), Oktober 2013. http://dx.doi.org/10.2172/1104761.
Der volle Inhalt der QuelleMurray, W., und M. A. Saunders. New approaches to linear and nonlinear programming. Office of Scientific and Technical Information (OSTI), März 1990. http://dx.doi.org/10.2172/5254075.
Der volle Inhalt der QuelleTodd, Michael J., und Yinyu Ye. A Centered Projective Algorithm for Linear Programming. Fort Belvoir, VA: Defense Technical Information Center, Februar 1988. http://dx.doi.org/10.21236/ada192100.
Der volle Inhalt der QuelleDomich, Paul D., Paul T. Boggs, Janet R. Donaldson und Christoph Witzgall. Optimal 3-dimensional methods for linear programming. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-4225.
Der volle Inhalt der Quelle