Zeitschriftenartikel zum Thema „Linear induction accelerators“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Linear induction accelerators.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Linear induction accelerators" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Bayless, John R., Craig P. Burkhart und Richard J. Adler. „Linear induction accelerators for industrial applications“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 40-41 (April 1989): 1142–45. http://dx.doi.org/10.1016/0168-583x(89)90558-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wang, Shao-Heng, und Jian-Jun Deng. „Acceleration modules in linear induction accelerators“. Chinese Physics C 38, Nr. 5 (Mai 2014): 057005. http://dx.doi.org/10.1088/1674-1137/38/5/057005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bayless, John R., und Richard J. Adler. „Linear induction accelerators for radiation processing“. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 31, Nr. 1-3 (Januar 1988): 327–31. http://dx.doi.org/10.1016/1359-0197(88)90146-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Matsuzawa, Hidenori, Haruhisa Wada, Satoshi Mori und Tadashi Yamamoto. „Induction Linear Accelerators with High-TcBulk Superconductor Lenses“. Japanese Journal of Applied Physics 30, Part 1, No. 11A (15.11.1991): 2972–73. http://dx.doi.org/10.1143/jjap.30.2972.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Humphries, Stanley. „Quadrupole field geometries for intense electron beam acceleration“. Laser and Particle Beams 14, Nr. 3 (September 1996): 519–28. http://dx.doi.org/10.1017/s0263034600010193.

Der volle Inhalt der Quelle
Annotation:
High-intensity electron beams could be focused in low-frequency RF accelerators and induction linear accelerators by adding transverse components to the accelerating electric field. Calculations with a 3D code show that quasielectrostatic focusing is sufficient to transport kiloampere electron beams in RF accelerators and the high-energy sections of induction accelerators. The elimination of conventional magnetic focusing systems could lead to reductions in the volume and weight of high-current electron accelerators. Two novel quadrupole geometries are investigated: a periodic array of spherical electrodes with alternating displacements and a set of plate electrodes with elliptical apertures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Herrmannsfeldt, W. B., und Denis Keefe. „Induction linac drivers for heavy ion fusion“. Laser and Particle Beams 8, Nr. 1-2 (Januar 1990): 81–88. http://dx.doi.org/10.1017/s0263034600007849.

Der volle Inhalt der Quelle
Annotation:
The Heavy Ion Fusion Accelerator Research (HIFAR) program of the U.S. Dept. of Energy has for several years concentrated on developing linear induction accelerators as Inertial Fusion (IF) drivers. This accelerator technology is suitable for the IF application because it is readily capable of accelerating short, intense pulses of charged particles with good electrical efficiency. The principal technical difficulty is in injecting and transporting the intense pulses while maintaining the necessary beam quality. The approach used has been to design a system of multiple beams so that not all of the charge has to be confined in a single beam line. The beams are finally brought together in a common focus at the target. This paper will briefly present the status and future plans of the program, and will also briefly review systems study results for HIF.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ekdahl, Carl. „The Resistive-Wall Instability in Multipulse Linear Induction Accelerators“. IEEE Transactions on Plasma Science 45, Nr. 5 (Mai 2017): 811–18. http://dx.doi.org/10.1109/tps.2017.2681040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Orzechowski, T., E. Scharlemann, B. Anderson, V. Neil, W. Fawley, D. Prosnitz, S. Yarema et al. „High-gain free electron lasers using induction linear accelerators“. IEEE Journal of Quantum Electronics 21, Nr. 7 (Juli 1985): 831–44. http://dx.doi.org/10.1109/jqe.1985.1072732.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Humphries, Stanley. „Simulations of longitudinal instabilities in ion induction linear accelerators“. Laser and Particle Beams 10, Nr. 3 (September 1992): 511–29. http://dx.doi.org/10.1017/s0263034600006765.

Der volle Inhalt der Quelle
Annotation:
This article describes computer simulations of a longitudinal instability that affects induction linear accelerators for high-power ion beams. The instability is driven by axial bunching of ions when they interact with acceleration gaps connected to input transmission lines. The process is similar to the longitudinal resistive wall instability in continuous systems. Although bunching instabilities do not appear in existing induction linear accelerators for electrons, they may be important for proposed ion accelerators for heavy ion fusion. The simulation code is a particle-in-cell model that describes a drifting beam crossing discrete acceleration gaps with a self-consistent calculation of axial space charge forces. In present studies with periodic boundaries, the model predicts values for quantities such as the stabilizing axial velocity spread that are in good agreement with analytic theories. The simulations describe the nonlinear growth of the instability and its saturation with increased axial emittance. They show that an initially cold beam is subject to a severe disruption that drives the emittance well above the stabilized saturation levels. The simulation results confirm that axial space charge forces do not reduce axial beam bunching. In fact, space charge effects increase the axial velocity spread required for stability. With simple resistive driving circuits, the model predicts velocity spreads that are too high for heavy ion fusion applications. Several processes currently under study may mitigate this result, including advanced pulsed power switching methods, enhanced gap capacitance, and an energy spread impressed between individual beams of a multibeam transport system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lagunas-Solar, Manuel C. „Induction-linear accelerators for food processing with ionizing radiation“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 10-11 (Mai 1985): 987–93. http://dx.doi.org/10.1016/0168-583x(85)90155-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Peskov, N. Yu, N. S. Ginzburg, A. K. Kaminsky, S. N. Sedykh und A. S. Sergeev. „High-Power Free-Electron Masers Based on Linear Induction Accelerators“. Radiophysics and Quantum Electronics 63, Nr. 12 (Mai 2021): 931–75. http://dx.doi.org/10.1007/s11141-021-10105-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Peskov, N. Yu, N. S. Ginzburg, A. K. Kaminsky, S. N. Sedykh und A. S. Sergeev. „High-Power Free-Electron Masers Based on Linear Induction Accelerators“. Izvestiya vysshikh uchebnykh zavedenii. Radiofizika 63, Nr. 12 (2020): 1032–81. http://dx.doi.org/10.52452/00213462_2020_63_12_1032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Zhang, H., K. Zhang, Y. Shen, X. Jiang, P. Dong, Y. Liu, Y. Wang et al. „Note: A pulsed laser ion source for linear induction accelerators“. Review of Scientific Instruments 86, Nr. 1 (Januar 2015): 016104. http://dx.doi.org/10.1063/1.4905363.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Peach, Ken, und Carl Ekdahl. „Particle Beam Radiography“. Reviews of Accelerator Science and Technology 06 (Januar 2013): 117–42. http://dx.doi.org/10.1142/s1793626813300065.

Der volle Inhalt der Quelle
Annotation:
Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Ekdahl, Carl, und Rodney McCrady. „Suppression of Beam Breakup in Linear Induction Accelerators by Stagger Tuning“. IEEE Transactions on Plasma Science 48, Nr. 10 (Oktober 2020): 3589–99. http://dx.doi.org/10.1109/tps.2020.3019999.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Hovingh, Jack, Victor O. Brady, Andris Faltens, Denis Keefe und Edward P. Lee. „Heavy-Ion Linear Induction Accelerators as Drivers for Inertial Fusion Power Plants“. Fusion Technology 13, Nr. 2 (Februar 1988): 255–78. http://dx.doi.org/10.13182/fst88-a25104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Rosenthal, S. E. „Characterization of electron flow in negative- and positive-polarity linear-induction accelerators“. IEEE Transactions on Plasma Science 19, Nr. 5 (1991): 822–30. http://dx.doi.org/10.1109/27.108419.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Hotta, Eiki, und Izumi Hayashi. „Bidirectional pulser for linear induction accelerators made from line cavities with external pulse injection.“ Kakuyūgō kenkyū 56, Nr. 1 (1986): 52–58. http://dx.doi.org/10.1585/jspf1958.56.52.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Burris-Mog, T. J., M. A. Chavez, M. A. Espy, M. J. Manard, D. C. Moir, J. B. Schillig, R. Trainham und P. L. Volegov. „Calibration of two compact permanent magnet spectrometers for high current electron linear induction accelerators“. Review of Scientific Instruments 89, Nr. 7 (Juli 2018): 073303. http://dx.doi.org/10.1063/1.5029837.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Miller, R. B., B. M. Marder, P. D. Coleman und R. E. Clark. „The effect of accelerating gap geometry on the beam breakup instability in linear induction accelerators“. Journal of Applied Physics 63, Nr. 4 (15.02.1988): 997–1008. http://dx.doi.org/10.1063/1.341136.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Bolyukh, V. F., und I. S. Shchukin. „Influence of limiting the duration of the armature winding current on the operating indicators of a linear pulse electromechanical induction type converter“. Electrical Engineering & Electromechanics, Nr. 6 (03.12.2021): 3–10. http://dx.doi.org/10.20998/2074-272x.2021.6.01.

Der volle Inhalt der Quelle
Annotation:
Introduction. Linear pulse electromechanical converters of induction type (LPECIT) are used in many branches of science and technology as shock-power devices and electromechanical accelerators. In them, due to the phase shift between the excitation current in the inductor winding and the induced current in the armature winding, in addition to the initial electrodynamic forces (EDF) of repulsion, subsequent EDF of attraction also arise. As a result, the operating indicators of LPECIT are reduced. The purpose of the article is to increase the performance of linear pulse electromechanical induction-type converters when operating as a shock-power device and an electromechanical accelerator by limiting the duration of the induced current in the armature winding until its polarity changes. Methodology. To analyze the electromechanical characteristics and indicators of LPECIT, a mathematical model was used, in which the solutions of equations describing interrelated electrical, magnetic, mechanical and thermal processes are presented in a recurrent form. Results. To eliminate the EDF of attraction between the LPIECIT windings, it is proposed to limit the duration of the induced current in the armature winding before changing its polarity by connecting a rectifier diode to it. It was found that when the converter operates as a shock-power device without limiting the armature winding current, the value of the EDF pulse after reaching the maximum value decreases by the end of the operating cycle. In the presence of a diode in the armature winding, the efficiency criterion, taking into account the EDF pulse, recoil force, current and heating temperature of the inductor winding, increases. When the converter operates as an electromechanical accelerator without limiting the armature winding current, the speed and efficiency decrease, taking into account the kinetic energy and voltage of the capacitive energy storage at the end of the operating cycle. In the presence of a diode in the armature winding, the efficiency criterion increases, the temperature rise of the armature winding decreases, the value of the maximum efficiency increases, reaching 16.16 %. Originality. It has been established that due to the limitation of the duration of the armature winding current, the power indicators of the LPECIT increase when operating as a shock-power device and the speed indicators when the LPECIT operates as an electromechanical accelerator. Practical value. It was found that with the help of a rectifier diode connected to the multi-turn winding of the armature, unipolarity of the current is ensured, which leads to the elimination of the EDF of attraction and an increase in the performance of the LPECIT.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Annenkov, Vladimir, Evgeny Berendeev, Evgeniia Volchok und Igor Timofeev. „Particle-in-Cell Simulations of High-Power THz Generator Based on the Collision of Strongly Focused Relativistic Electron Beams in Plasma“. Photonics 8, Nr. 6 (21.05.2021): 172. http://dx.doi.org/10.3390/photonics8060172.

Der volle Inhalt der Quelle
Annotation:
Based on particle-in-cell simulations, we propose to generate sub-nanosecond pulses of narrowband terahertz radiation with tens of MW power using unique properties of kiloampere relativistic (2 MeV) electron beams produced by linear induction accelerators. Due to small emittance of such beams, they can be focused into millimeter and sub-millimeter spots comparable in sizes with the wavelength of THz radiation. If such a beam is injected into a plasma, it becomes unstable against the two-stream instability and excites plasma oscillations that can be converted to electromagnetic waves at the plasma frequency and its harmonics. It is shown that several radiation mechanisms with high efficiency of power conversion (∼1%) come into play when the radial size of the beam–plasma system becomes comparable with the wavelength of the emitted waves.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Korsbäck, Anders, Flyura Djurabekova und Walter Wuensch. „Statistics of vacuum electrical breakdown clustering and the induction of follow-up breakdowns“. AIP Advances 12, Nr. 11 (01.11.2022): 115317. http://dx.doi.org/10.1063/5.0111677.

Der volle Inhalt der Quelle
Annotation:
Understanding the underlying physics of vacuum electrical breakdown is of relevance for the development of technologies where breakdown is of significance, either as an intended part of device operation or as a cause of failure. One prominent contemporary case of the latter is high-gradient linear accelerators, where structures must be able to operate with both high surface electric fields and low breakdown rates. Temporal clustering of breakdowns has for long been observed in accelerating structures. In this work, the statistics of breakdown clustering were studied using data collected by a system applying DC voltage pulses over parallel disk electrodes in a vacuum chamber. It was found that the obtained distributions of cluster sizes can be explained by postulating that every breakdown induces a number of follow-up breakdowns that are Poisson-distributed with λ < 1. It was also found that the primary breakdown rate, i.e., the breakdown rate after discounting follow-up breakdowns, fluctuates over time but has no discernible correlation with cluster size. Considered together, these results provide empirical support for the interpretation that primary and follow-up breakdowns are categorically different kinds of events with different underlying causes and mechanisms. Furthermore, they support the interpretation that there is an actual causal relationship between the breakdowns in a cluster rather than them simply being concurrent events with a common underlying cause.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Peskov, N. Yu, N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, V. Yu Zaslavsky, A. K. Kaminsky, S. N. Sedykh et al. „Development of powerful long-pulse Bragg FELs operating from sub-THz to THz bands based on linear induction accelerators: recent results and projects“. EPJ Web of Conferences 195 (2018): 01010. http://dx.doi.org/10.1051/epjconf/201819501010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Logachev, P. V., G. I. Kuznetsov, A. A. Korepanov, A. V. Akimov, S. V. Shiyankov, O. A. Pavlov, D. A. Starostenko und G. A. Fat’kin. „LIU-2 linear induction accelerator“. Instruments and Experimental Techniques 56, Nr. 6 (November 2013): 672–79. http://dx.doi.org/10.1134/s0020441213060195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Bresie, D. A., J. A. Andrews und S. W. Ingram. „Parametric approach to linear induction accelerator design“. IEEE Transactions on Magnetics 27, Nr. 1 (Januar 1991): 390–93. http://dx.doi.org/10.1109/20.101063.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Sandalov, Evgeny S., Stanislav L. Sinitsky, Alexander V. Burdakov, Petr A. Bak, Kirill I. Zhivankov, Ermek K. Kenzhebulatov, Pavel V. Logachev, Dmitrii I. Skovorodin, Alexander R. Akhmetov und Oleg A. Nikitin. „Electrodynamic System of the Linear Induction Accelerator Module“. IEEE Transactions on Plasma Science 49, Nr. 2 (Februar 2021): 718–28. http://dx.doi.org/10.1109/tps.2020.3045345.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Starostenko, D., A. Akimov, P. Bak, D. Bolkhovityanov, Ya Kulenko, P. Logachev, D. Nikiforov et al. „Beam Dynamics of Linear Induction Accelerator LIA-2“. Physics of Particles and Nuclei Letters 19, Nr. 4 (26.07.2022): 393–96. http://dx.doi.org/10.1134/s1547477122040197.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Huang Ziping, 黄子平, 蒋薇 Jiang Wei und 叶毅 Ye Yi. „Reset system for multi-pulse linear induction accelerator“. High Power Laser and Particle Beams 26, Nr. 4 (2014): 45101. http://dx.doi.org/10.3788/hplpb20142604.45101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Zhang Huang, 张篁, 陈德彪 Chen Debiao, 江孝国 Jiang Xiaoguo, 夏连胜 Xia Liansheng, 刘星光 Liu Xingguang, 谌怡 Chen Yi und 章林文 Zhang Linwen. „Experimental research on photocathode for linear induction accelerator“. High Power Laser and Particle Beams 22, Nr. 3 (2010): 583–86. http://dx.doi.org/10.3788/hplpb20102203.0583.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Yang Changhong, 杨长鸿, 蒙林 Meng Lin, 张开志 Zhang Kaizhi, 章文卫 Zhang Wenwei und 刘大刚 Liu Dagang. „Simulation of transport process for linear induction accelerator“. High Power Laser and Particle Beams 22, Nr. 4 (2010): 913–17. http://dx.doi.org/10.3788/hplpb20102204.0913.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Ekdahl, Carl, Joshua E. Coleman und Brian Trent McCuistian. „Beam Breakup in an Advanced Linear Induction Accelerator“. IEEE Transactions on Plasma Science 44, Nr. 7 (Juli 2016): 1094–102. http://dx.doi.org/10.1109/tps.2016.2571123.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Sharma, Archana, K. Senthil, D. D. Praveen Kumar, S. Mitra, V. Sharma, A. Patel, D. K. Sharma et al. „Preliminary results of Linear Induction Accelerator LIA-200“. Journal of Instrumentation 5, Nr. 05 (04.05.2010): P05001. http://dx.doi.org/10.1088/1748-0221/5/05/p05001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Chen, Yinbao, und M. Reiser. „Radial focusing in a linear induction accelerator gap“. Journal of Applied Physics 65, Nr. 9 (Mai 1989): 3324–28. http://dx.doi.org/10.1063/1.342643.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Ekdahl, Carl. „Tuning the DARHT Long-Pulse Linear Induction Accelerator“. IEEE Transactions on Plasma Science 41, Nr. 10 (Oktober 2013): 2774–80. http://dx.doi.org/10.1109/tps.2013.2256933.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Ekdahl, Carl, E. O. Abeyta, P. Aragon, R. Archuleta, G. Cook, D. Dalmas, K. Esquibel et al. „Beam Dynamics in a Long-pulse Linear Induction Accelerator“. Journal of the Korean Physical Society 59, Nr. 6(1) (15.12.2011): 3448–52. http://dx.doi.org/10.3938/jkps.59.3448.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Ekdahl, Carl, Carl A. Carlson, Daniel K. Frayer, B. Trent McCuistian, Christopher B. Mostrom, Martin E. Schulze und Carsten H. Thoma. „Emittance Growth in the DARHT-II Linear Induction Accelerator“. IEEE Transactions on Plasma Science 45, Nr. 11 (November 2017): 2962–73. http://dx.doi.org/10.1109/tps.2017.2755861.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Akimov, A. V., V. E. Akimov, P. A. Bak, V. D. Bochkov, L. T. Vekhoreva, A. A. Korepanov, P. V. Logachev, A. N. Panov, D. A. Starostenko und O. V. Shilin. „A pulse power supply of the linear induction accelerator“. Instruments and Experimental Techniques 55, Nr. 2 (März 2012): 218–24. http://dx.doi.org/10.1134/s0020441212010241.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Ekdahl, Carl. „Electron-Beam Corkscrew Motion in an Advanced Linear Induction Accelerator“. IEEE Transactions on Plasma Science 49, Nr. 11 (November 2021): 3548–53. http://dx.doi.org/10.1109/tps.2021.3120877.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Yang Changhong, 杨长鸿, 蒙林 Meng Lin, 张开志 Zhang Kaizhi, 章文卫 Zhang Wenwei und 刘大刚 Liu Dagang. „Numerical simulation of beam focusing magnetic field in linear induction accelerator“. High Power Laser and Particle Beams 22, Nr. 6 (2010): 1331–34. http://dx.doi.org/10.3788/hplpb20102206.1331.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Batrakov, Aleksandr M., Pavel V. Logatchev, Anton V. Pavlenko, Vladislav Ya Sazansky und Georgy A. Fatkin. „The Control System of Linear Induction Accelerator for X-Ray Radiography“. Siberian Journal of Physics 5, Nr. 3 (01.10.2010): 98–105. http://dx.doi.org/10.54362/1818-7919-2010-5-3-98-105.

Der volle Inhalt der Quelle
Annotation:
The structure and hardware of control system for flash X-Ray radiography complex currently under construction in BINP, SB RAS are discussed in this paper. Special features of this control system are: high amount of channels, nanosecond times of main processes, work in environment of powerful noises from pulsed high-voltage devices
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Ekdahl, C., E. O. Abeyta, H. Bender, W. Broste, C. Carlson, L. Caudill, K. C. D. Chan et al. „Initial electron-beam results from the DARHT-II linear induction accelerator“. IEEE Transactions on Plasma Science 33, Nr. 2 (April 2005): 892–900. http://dx.doi.org/10.1109/tps.2005.845115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Ekdahl, Carl, P. Allison, J. E. Coleman, T. Kaupilla, B. T. McCuistian, D. C. Moir und M. Schulze. „Steering an intense relativistic electron beam in a linear induction accelerator“. Review of Scientific Instruments 91, Nr. 2 (01.02.2020): 026102. http://dx.doi.org/10.1063/1.5125421.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Petzoldt, Ronald, Neil Alexander, Lane Carlson, Eric Cotner, Dan Goodin und Robert Kratz. „Linear Induction Accelerator with Magnetic Steering for Inertial Fusion Target Injection“. Fusion Science and Technology 68, Nr. 2 (September 2015): 308–13. http://dx.doi.org/10.13182/fst14-915.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Yu Haijun, 禹海军, 朱隽 Zhu Jun, 江孝国 Jiang Xiaoguo, 王远 Wang Yuan, 陈楠 Chen Nan, 张振涛 Zhang Zhentao, 戴文华 Dai Wenhua und 刘承俊 Liu Chengjun. „Damage diagnosis for bremsstrahlung converter target of Dragon-Ⅰ linear induction accelerator“. High Power Laser and Particle Beams 23, Nr. 4 (2011): 1035–38. http://dx.doi.org/10.3788/hplpb20112304.1035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Ray, R., und A. D. Datta. „An approach to the development of a small-scale linear induction accelerator“. Journal of Physics D: Applied Physics 21, Nr. 9 (14.09.1988): 1336–41. http://dx.doi.org/10.1088/0022-3727/21/9/004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Bogdan, O. V., V. I. Karas’, E. A. Kornilov und O. V. Manuilenko. „2.5-Dimensional numerical simulation of a high-current ion linear induction accelerator“. Plasma Physics Reports 34, Nr. 8 (August 2008): 667–77. http://dx.doi.org/10.1134/s1063780x08080059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Ekdahl, Carl. „The Ion-Hose Instability in a High-Current Multipulse Linear Induction Accelerator“. IEEE Transactions on Plasma Science 47, Nr. 1 (Januar 2019): 300–306. http://dx.doi.org/10.1109/tps.2018.2872472.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Ekdahl, C., E. O. Abeyta, P. Aragon, R. Archuleta, R. Bartsch, H. Bender, R. Briggs et al. „Long-pulse beam stability experiments on the DARHT-II linear induction accelerator“. IEEE Transactions on Plasma Science 34, Nr. 2 (April 2006): 460–66. http://dx.doi.org/10.1109/tps.2006.872481.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Denno, K. „Longitudinal and Radial Mhd Linear Induction Accelerator with Hot Conducting Plasma Core“. IEEE Transactions on Nuclear Science 32, Nr. 5 (Oktober 1985): 3216–18. http://dx.doi.org/10.1109/tns.1985.4334324.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie