Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Linear equations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Linear equations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Linear equations"
Rohn, Jiří. „Interval solutions of linear interval equations“. Applications of Mathematics 35, Nr. 3 (1990): 220–24. http://dx.doi.org/10.21136/am.1990.104406.
Der volle Inhalt der QuelleKurzweil, Jaroslav, und Alena Vencovská. „Linear differential equations with quasiperiodic coefficients“. Czechoslovak Mathematical Journal 37, Nr. 3 (1987): 424–70. http://dx.doi.org/10.21136/cmj.1987.102170.
Der volle Inhalt der QuellePatel, Roshni V., und Jignesh S. Patel. „Optimization of Linear Equations using Genetic Algorithms“. Indian Journal of Applied Research 2, Nr. 3 (01.10.2011): 56–58. http://dx.doi.org/10.15373/2249555x/dec2012/19.
Der volle Inhalt der QuelleFraňková, Dana. „Substitution method for generalized linear differential equations“. Mathematica Bohemica 116, Nr. 4 (1991): 337–59. http://dx.doi.org/10.21136/mb.1991.126028.
Der volle Inhalt der QuelleSchwabik, Štefan. „Linear Stieltjes integral equations in Banach spaces“. Mathematica Bohemica 124, Nr. 4 (1999): 433–57. http://dx.doi.org/10.21136/mb.1999.125994.
Der volle Inhalt der QuelleCecchi, Mariella, Zuzana Došlá, Mauro Marini und Ivo Vrkoč. „Asymptotic properties for half-linear difference equations“. Mathematica Bohemica 131, Nr. 4 (2006): 347–63. http://dx.doi.org/10.21136/mb.2006.133970.
Der volle Inhalt der QuelleDavies, Alan, und Rainer Kress. „Linear Integral Equations“. Mathematical Gazette 74, Nr. 470 (Dezember 1990): 405. http://dx.doi.org/10.2307/3618171.
Der volle Inhalt der QuelleS., F., und Rainer Kress. „Linear Integral Equations.“ Mathematics of Computation 56, Nr. 193 (Januar 1991): 379. http://dx.doi.org/10.2307/2008551.
Der volle Inhalt der QuelleSTEWART, G. W. „Solving Linear Equations“. Science 236, Nr. 4800 (24.04.1987): 461–62. http://dx.doi.org/10.1126/science.236.4800.461.
Der volle Inhalt der QuellePAN, V., und J. H. REIF. „Response:Solving Linear Equations“. Science 236, Nr. 4800 (24.04.1987): 462–63. http://dx.doi.org/10.1126/science.236.4800.462.
Der volle Inhalt der QuelleDissertationen zum Thema "Linear equations"
Yesilyurt, Deniz. „Solving Linear Diophantine Equations And Linear Congruential Equations“. Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-19247.
Der volle Inhalt der QuelleChen, Huyuan. „Fully linear elliptic equations and semilinear fractionnal elliptic equations“. Thesis, Tours, 2014. http://www.theses.fr/2014TOUR4001/document.
Der volle Inhalt der QuelleThis thesis is divided into six parts. The first part is devoted to prove Hadamard properties and Liouville type theorems for viscosity solutions of fully nonlinear elliptic partial differential equations with gradient term
Goedhart, Eva Govinda. „Explicit bounds for linear difference equations /“. Electronic thesis, 2005. http://etd.wfu.edu/theses/available/etd-05102005-222845/.
Der volle Inhalt der QuelleJonklass, Raymond. „Learners' strategies for solving linear equations“. Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52915.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Algebra deals amongst others with the relationship between variables. It differs from Arithmetic amongst others as there is not always a numerical solution to the problem. An algebraic expression can even be the solution to the problem in Algebra. The variables found in Algebra are often represented by letters such as X, y, etc. Equations are an integral part of Algebra. To solve an equation, the value of an unknown must be determined so that the left hand side of the equation is equal to the right hand side. There are various ways in which the solving of equations can be taught. The purpose of this study is to determine the existence of a cognitive gap as described by Herseovies & Linchevski (1994) in relation to solving linear equations. When solving linear equations, an arithmetical approach is not always effective. A new way of structural thinking is needed when solving linear equations in their different forms. In this study, learners' intuitive, informal ways of solving linear equations were examined prior to any formal instruction and before the introduction of algebraic symbols and notation. This information could help educators to identify the difficulties learners have when moving from solving arithmetical equations to algebraic equations. The learners' errors could help educators plan effective ways of teaching strategies when solving linear equations. The research strategy for this study was both quantitative and qualitative. Forty-two Grade 8 learners were chosen to individually do assignments involving different types of linear equations. Their responses were recorded, coded and summarised. Thereafter the learners' responses were interpreted, evaluated and analysed. Then a representative sample of fourteen learners was chosen randomly from the same class and semi-structured interviews were conducted with them From these interviews the learners' ways of thinking when solving linear equations, were probed. This study concludes that a cognitive gap does exist in the context of the investigation. Moving from arithmetical thinking to algebraic thinking requires a paradigm shift. To make adequate provision for this change in thinking, careful curriculum planning is required.
AFRIKAANSE OPSOMMING: Algebra behels onder andere die verwantskap tussen veranderlikes. Algebra verskil van Rekenkunde onder andere omdat daar in Algebra nie altyd 'n numeriese oplossing vir die probleem is nie. InAlgebra kan 'n algebraïese uitdrukking somtyds die oplossing van 'n probleem wees. Die veranderlikes in Algebra word dikwels deur letters soos x, y, ens. voorgestel. Vergelykings is 'n integrale deel van Algebra. Om vergelykings op te los, moet 'n onbekende se waarde bepaal word, om die linkerkant van die vergelyking gelyk te maak aan die regterkant. Daar is verskillende maniere om die oplossing van algebraïese vergelykings te onderrig. Die doel van hierdie studie is om die bestaan van 'n sogenaamde "kognitiewe gaping" soos beskryf deur Herseovies & Linchevski (1994), met die klem op lineêre vergelykings, te ondersoek. Wanneer die oplossing van 'n linêere vergelyking bepaal word, is 'n rekenkundige benadering nie altyd effektiefnie. 'n Heel nuwe, strukturele manier van denke word benodig wanneer verskillende tipes linêere vergelykings opgelos word. In hierdie studie word leerders se intuitiewe, informele metodes ondersoek wanneer hulle lineêre vergelykings oplos, voordat hulle enige formele metodes onderrig is en voordat hulle kennis gemaak het met algebraïese simbole en notasie. Hierdie inligting kan opvoeders help om leerders se kognitiewe probleme in verband met die verskil tussen rekenkundige en algebraïese metodes te identifiseer.Die foute wat leerders maak, kan opvoeders ook help om effektiewe onderrigmetodes te beplan, wanneer hulle lineêre vergelykings onderrig. As leerders eers die skuif van rekenkundige metodes na algebrarese metodes gemaak het, kan hulle besef dat hul primitiewe metodes nie altyd effektief is nie. Die navorsingstrategie wat in hierdie studie aangewend is, is kwalitatief en kwantitatief Twee-en-veertig Graad 8 leerders is gekies om verskillende tipes lineêre vergelykings individueel op te los. Hul antwoorde is daarna geïnterpreteer, geëvalueer en geanaliseer. Daarna is veertien leerders uit hierdie groep gekies en semigestruktureerde onderhoude is met hulle gevoer. Vanuit die onderhoude kon 'n dieper studie van die leerders se informele metodes van oplossing gemaak word. Die gevolgtrekking wat in hierdie studie gemaak word, is dat daar wel 'n kognitiewe gaping bestaan in die konteks van die studie. Leerders moet 'n paradigmaskuif maak wanneer hulle van rekenkundige metodes na algebraïese metodes beweeg. Hierdie klemverskuiwing vereis deeglike kurrikulumbeplanning.
Altassan, Alaa Abdullah. „Linear equations over free Lie algebras“. Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/linear-equations-over-free-liealgebras(6e29b286-1869-4207-b054-8baab98e70df).html.
Der volle Inhalt der QuelleChen, Hua, Wei-Xi Li und Chao-Jiang Xu. „Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations“. Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2009/3028/.
Der volle Inhalt der QuelleHafez, Salah Taha. „Continued fractions and solutions of linear and non-linear lattice equations“. Thesis, University of Kent, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236725.
Der volle Inhalt der QuelleTorshage, Axel. „Linear Functional Equations and Convergence of Iterates“. Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-56450.
Der volle Inhalt der QuelleGrey, David John. „Parallel solution of power system linear equations“. Thesis, Durham University, 1995. http://etheses.dur.ac.uk/5429/.
Der volle Inhalt der QuelleSerna, Rodrigo. „Solving Linear Systems of Equations in Hardware“. Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200610.
Der volle Inhalt der QuelleBücher zum Thema "Linear equations"
Kanwal, Ram P. Linear Integral Equations. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6012-1.
Der volle Inhalt der QuelleKress, Rainer. Linear Integral Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-97146-4.
Der volle Inhalt der QuelleKress, Rainer. Linear Integral Equations. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0559-3.
Der volle Inhalt der QuelleKanwal, Ram P. Linear Integral Equations. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-0765-8.
Der volle Inhalt der QuelleKress, Rainer. Linear Integral Equations. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9593-2.
Der volle Inhalt der QuelleLinear integral equations. 2. Aufl. Boston: Birkhäuser, 1997.
Den vollen Inhalt der Quelle findenLovitt, William Vernon. Linear integral equations. Mineola, N.Y: Dover Publications, 2005.
Den vollen Inhalt der Quelle findenKress, Rainer. Linear Integral Equations. New York, NY: Springer New York, 1999.
Den vollen Inhalt der Quelle findenKress, Rainer. Linear Integral Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Den vollen Inhalt der Quelle findenWoodford, Chris. Solving linear and non-linear equations. New York: Ellis Horwood, 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Linear equations"
Afriat, S. N. „Linear Equations“. In Linear Dependence, 67–88. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4273-5_7.
Der volle Inhalt der QuelleMiyake, Toshitsune. „Linear Equations“. In Linear Algebra, 33–59. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6994-1_2.
Der volle Inhalt der QuelleMüller, P. C., und W. O. Schiehlen. „Matrix equations“. In Linear vibrations, 296–306. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5047-4_13.
Der volle Inhalt der QuelleStroud, K. A., und Dexter Booth. „Linear equations and simultaneous linear equations“. In Foundation Mathematics, 184–202. London: Macmillan Education UK, 2009. http://dx.doi.org/10.1057/978-0-230-36672-5_5.
Der volle Inhalt der QuelleKinzel, Wolfgang, und Georg Reents. „Linear Equations“. In Physics by Computer, 47–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-46839-1_3.
Der volle Inhalt der QuelleHolden, K., und A. W. Pearson. „Linear Equations“. In Introductory Mathematics for Economics and Business, 1–42. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-22357-2_1.
Der volle Inhalt der QuelleWoodford, C., und C. Phillips. „Linear Equations“. In Numerical Methods with Worked Examples: Matlab Edition, 17–45. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-1366-6_2.
Der volle Inhalt der QuelleRedfern, Darren, und Colin Campbell. „Linear Equations“. In The Matlab® 5 Handbook, 21–41. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2170-8_3.
Der volle Inhalt der QuelleRao, A. Ramachandra, und P. Bhimasankaram. „Linear equations“. In Texts and Readings in Mathematics, 185–217. Gurgaon: Hindustan Book Agency, 2000. http://dx.doi.org/10.1007/978-93-86279-01-9_6.
Der volle Inhalt der QuelleVerhulst, Ferdinand. „Linear Equations“. In Universitext, 69–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61453-8_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Linear equations"
Bronstein, Manuel. „Linear ordinary differential equations“. In Papers from the international symposium. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/143242.143264.
Der volle Inhalt der QuelleZadrzyńska, Ewa, und Wojciech M. Zajączkowski. „Some linear parabolic system in Besov spaces“. In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-36.
Der volle Inhalt der QuelleFREDET, A. „ALGORITHMS AROUND LINEAR DIFFERENTIAL EQUATIONS“. In Proceedings of the International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770752_0018.
Der volle Inhalt der QuelleBerkenbosch, Maint. „Moduli spaces for linear differential equations“. In The Conference on Differential Equations and the Stokes Phenomenon. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776549_0002.
Der volle Inhalt der QuelleMIGUEL, JOSÉ J., ANDREI SHINDIAPIN und ARCADY PONOSOV. „STABILITY AND LINEAR CHAIN TRICK“. In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0194.
Der volle Inhalt der QuelleGuihong Wang, Haiyan Liu und Xiangfeng Liu. „The application of excel in solving linear equations and nonlinear equation“. In 2011 International Conference on Computer Science and Service System (CSSS). IEEE, 2011. http://dx.doi.org/10.1109/csss.2011.5974400.
Der volle Inhalt der QuelleČermák, Jan A. N. „The Schröder equation and asymptotic properties of linear delay differential equations“. In The 7'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2003. http://dx.doi.org/10.14232/ejqtde.2003.6.6.
Der volle Inhalt der QuelleChochiev, T. Z. „On non-linear equation, generalizing the equations of the Riccati class“. In General question of world science. "Л-Журнал", 2018. http://dx.doi.org/10.18411/gq-31-03-2018-01.
Der volle Inhalt der QuelleStevens, B. L. „Derivation of aircraft, linear state equations from implicit nonlinear equations“. In 29th IEEE Conference on Decision and Control. IEEE, 1990. http://dx.doi.org/10.1109/cdc.1990.203642.
Der volle Inhalt der QuelleLASSAS, MATTI. „INVERSE PROBLEMS FOR LINEAR AND NON-LINEAR HYPERBOLIC EQUATIONS“. In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0199.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Linear equations"
Jain, Himanshu, Edmund M. Clarke und Orna Grumberg. Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations. Fort Belvoir, VA: Defense Technical Information Center, Februar 2008. http://dx.doi.org/10.21236/ada476801.
Der volle Inhalt der QuelleCohen, Herbert E. The Instability of Linear Heterogeneous Lanchester Equations. Fort Belvoir, VA: Defense Technical Information Center, November 1991. http://dx.doi.org/10.21236/ada243519.
Der volle Inhalt der QuelleNirenberg, Louis. Techniques in Linear and Nonlinear Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada187109.
Der volle Inhalt der QuelleRundell, William, und Michael S. Pilant. Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations. Fort Belvoir, VA: Defense Technical Information Center, September 1992. http://dx.doi.org/10.21236/ada256012.
Der volle Inhalt der QuellePilant, Michael S., und William Rundell. Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1989. http://dx.doi.org/10.21236/ada218462.
Der volle Inhalt der QuelleSubasi, Yigit. Quantum algorithms for linear systems of equations [Slides]. Office of Scientific and Technical Information (OSTI), Dezember 2017. http://dx.doi.org/10.2172/1774402.
Der volle Inhalt der QuelleMathia, Karl. Solutions of linear equations and a class of nonlinear equations using recurrent neural networks. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.1354.
Der volle Inhalt der QuelleParzen, George. Linear Orbits Parameters for the Exact Equations of Motion. Office of Scientific and Technical Information (OSTI), Februar 1994. http://dx.doi.org/10.2172/1119381.
Der volle Inhalt der QuelleChen, Goong, und Han-Kun Wang. Pointwise Stabilization for Coupled Quasilinear and Linear Wave Equations. Fort Belvoir, VA: Defense Technical Information Center, Januar 1988. http://dx.doi.org/10.21236/ada190031.
Der volle Inhalt der QuelleHerzog, K. J., M. D. Morris und T. J. Mitchell. Bayesian approximation of solutions to linear ordinary differential equations. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6242347.
Der volle Inhalt der Quelle