Zeitschriftenartikel zum Thema „Linear encoders“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Linear encoders" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Paredes, Ferran, Cristian Herrojo und Ferran Martín. „Position Sensors for Industrial Applications Based on Electromagnetic Encoders“. Sensors 21, Nr. 8 (13.04.2021): 2738. http://dx.doi.org/10.3390/s21082738.
Der volle Inhalt der QuelleWesel, R. D., Xueting Liu, J. M. Cioffi und C. Komninakis. „Constellation labeling for linear encoders“. IEEE Transactions on Information Theory 47, Nr. 6 (2001): 2417–31. http://dx.doi.org/10.1109/18.945255.
Der volle Inhalt der QuelleAlejandre, I., und M. Artes. „Thermal non-linear behaviour in optical linear encoders“. International Journal of Machine Tools and Manufacture 46, Nr. 12-13 (Oktober 2006): 1319–25. http://dx.doi.org/10.1016/j.ijmachtools.2005.10.010.
Der volle Inhalt der QuelleYang, Shengtian, Thomas Honold, Yan Chen, Zhaoyang Zhang und Peiliang Qiu. „Constructing Linear Encoders With Good Spectra“. IEEE Transactions on Information Theory 60, Nr. 10 (Oktober 2014): 5950–65. http://dx.doi.org/10.1109/tit.2014.2341560.
Der volle Inhalt der QuelleDong, L. X., A. Subramanian, B. J. Nelson und Y. Sun. „Nanotube Encoders“. Solid State Phenomena 121-123 (März 2007): 1363–66. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.1363.
Der volle Inhalt der QuelleMerino, S., A. Retolaza und I. Lizuain. „Linear optical encoders manufactured by imprint lithography“. Microelectronic Engineering 83, Nr. 4-9 (April 2006): 897–901. http://dx.doi.org/10.1016/j.mee.2006.01.018.
Der volle Inhalt der QuelleAlejandre, I., und M. Artes. „REAL THERMAL COEFFICIENT IN OPTICAL LINEAR ENCODERS“. Experimental Techniques 28, Nr. 4 (Juli 2004): 18–22. http://dx.doi.org/10.1111/j.1747-1567.2004.tb00172.x.
Der volle Inhalt der QuelleJovanović, Jelena, Dragan Denić und Uglješa Jovanović. „An Improved Linearization Circuit Used for Optical Rotary Encoders“. Measurement Science Review 17, Nr. 5 (01.10.2017): 241–49. http://dx.doi.org/10.1515/msr-2017-0029.
Der volle Inhalt der QuelleKarim, Ahmad M., Hilal Kaya, Mehmet Serdar Güzel, Mehmet R. Tolun, Fatih V. Çelebi und Alok Mishra. „A Novel Framework Using Deep Auto-Encoders Based Linear Model for Data Classification“. Sensors 20, Nr. 21 (09.11.2020): 6378. http://dx.doi.org/10.3390/s20216378.
Der volle Inhalt der QuelleGurauskis, Donatas, Artūras Kilikevičius und Sergejus Borodinas. „Experimental Investigation of Linear Encoder’s Subdivisional Errors under Different Scanning Speeds“. Applied Sciences 10, Nr. 5 (04.03.2020): 1766. http://dx.doi.org/10.3390/app10051766.
Der volle Inhalt der QuelleIgarashi, S., T. Nonaka, F. Sato, T. Sato und H. Matsuki. „Fundamental Study on Developing Eddy Current Linear Encoders“. Journal of the Magnetics Society of Japan 35, Nr. 2 (2011): 56–59. http://dx.doi.org/10.3379/msjmag.1102r008.
Der volle Inhalt der QuelleYamaguchi, Ichirou. „Linear and rotary encoders using eletronic speckle correlation“. Optical Engineering 30, Nr. 12 (1991): 1862. http://dx.doi.org/10.1117/12.56023.
Der volle Inhalt der QuelleJohannesson, R., und Z. x. Wan. „A linear algebra approach to minimal convolutional encoders“. IEEE Transactions on Information Theory 39, Nr. 4 (Juli 1993): 1219–33. http://dx.doi.org/10.1109/18.243440.
Der volle Inhalt der QuelleAlejandre, I., und M. Artes. „Machine tool errors caused by optical linear encoders“. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 218, Nr. 1 (Januar 2004): 113–22. http://dx.doi.org/10.1243/095440504772830255.
Der volle Inhalt der QuelleBhaskarrao, Nandapurkar Kishor, Chandrika Sreekantan Anoop und Pranab Kumar Dutta. „A Linear Direct-Digital Converter for Sinusoidal Encoders“. IEEE Transactions on Instrumentation and Measurement 68, Nr. 7 (Juli 2019): 2570–78. http://dx.doi.org/10.1109/tim.2018.2865050.
Der volle Inhalt der QuelleYe, Guo Yong, Yong Sheng Shi, Lei Yin, Hong Zhong Liu, Xuan Li, Hao Yu Yu und Bing Heng Lu. „Analysis of Quadrature Phase-Shift Error Caused by Angular Misalignment in Moiré Linear Encoders“. Advanced Materials Research 712-715 (Juni 2013): 1863–67. http://dx.doi.org/10.4028/www.scientific.net/amr.712-715.1863.
Der volle Inhalt der QuelleLee, Jin-Fuw, Wean-Shun Tsay und William van Altena. „Laser Interferometer Measurement System on the Yale PDS 2020G“. Symposium - International Astronomical Union 109 (1986): 237–42. http://dx.doi.org/10.1017/s0074180900076634.
Der volle Inhalt der QuelleZhao, Lei, Kai Cheng, Shijin Chen, Hui Ding und Liang Zhao. „An approach to investigate moiré patterns of a reflective linear encoder with application to accuracy improvement of a machine tool“. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233, Nr. 3 (10.01.2018): 927–36. http://dx.doi.org/10.1177/0954405417752506.
Der volle Inhalt der QuelleGurauskis, Donatas, Artūras Kilikevičius und Albinas Kasparaitis. „Thermal and Geometric Error Compensation Approach for an Optical Linear Encoder“. Sensors 21, Nr. 2 (07.01.2021): 360. http://dx.doi.org/10.3390/s21020360.
Der volle Inhalt der QuelleGurauskis, Donatas, Artūras Kilikevičius und Albinas Kasparaitis. „Thermal and Geometric Error Compensation Approach for an Optical Linear Encoder“. Sensors 21, Nr. 2 (07.01.2021): 360. http://dx.doi.org/10.3390/s21020360.
Der volle Inhalt der QuelleSavu, Tom. „Data Processing for Ship Screw Propellers Measurements“. Materials Science Forum 957 (Juni 2019): 239–46. http://dx.doi.org/10.4028/www.scientific.net/msf.957.239.
Der volle Inhalt der QuelleParedes, Ferran, Cristian Herrojo und Ferran Martín. „3D-Printed Quasi-Absolute Electromagnetic Encoders for Chipless-RFID and Motion Control Applications“. Electronics 10, Nr. 10 (13.05.2021): 1154. http://dx.doi.org/10.3390/electronics10101154.
Der volle Inhalt der QuelleXie, Ling-bo, Zhi-cheng Qiu und Xian-min Zhang. „Development of a 3-PRR Precision Tracking System with Full Closed-Loop Measurement and Control“. Sensors 19, Nr. 8 (12.04.2019): 1756. http://dx.doi.org/10.3390/s19081756.
Der volle Inhalt der QuelleSong, Ju-Ho, Kyung-Chan Kim und Soo Hyun Kim. „Reducing tilt errors in moiré linear encoders using phase-modulated grating“. Review of Scientific Instruments 71, Nr. 6 (Juni 2000): 2296–300. http://dx.doi.org/10.1063/1.1150445.
Der volle Inhalt der QuelleViejo, Guillaume, Thomas Cortier und Adrien Peyrache. „Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders“. PLOS Computational Biology 14, Nr. 3 (22.03.2018): e1006041. http://dx.doi.org/10.1371/journal.pcbi.1006041.
Der volle Inhalt der QuellePiestrak, S. J., A. Dandache und F. Monteiro. „Designing fault-secure parallel encoders for systematic linear error correcting codes“. IEEE Transactions on Reliability 52, Nr. 4 (Dezember 2003): 492–500. http://dx.doi.org/10.1109/tr.2003.821940.
Der volle Inhalt der QuelleTantau, Mathias, Paul Morantz und Paul Shore. „Position sensor for active magnetic bearing with commercial linear optical encoders“. CIRP Annals 70, Nr. 1 (2021): 419–22. http://dx.doi.org/10.1016/j.cirp.2021.04.092.
Der volle Inhalt der QuelleLi, Fangfang, Sergey Krivenko und Vladimir Lukin. „TWO-STEP PROVIDING OF DESIRED QUALITY IN LOSSY IMAGE COMPRESSION BY SPIHT“. RADIOELECTRONIC AND COMPUTER SYSTEMS, Nr. 2 (26.04.2020): 22–32. http://dx.doi.org/10.32620/reks.2020.2.02.
Der volle Inhalt der QuelleZhao, Guobo, Guoyong Ye, Hui Liu, Biao Lei, Xuan Li, Weiliang Han und Hongzhong Liu. „Electronic Interpolation Interface Based on Linear Subdivision Method for Sinusoidal Optical Encoders“. IEEE Sensors Journal 20, Nr. 7 (01.04.2020): 3646–54. http://dx.doi.org/10.1109/jsen.2019.2961177.
Der volle Inhalt der QuelleLópez, J., M. Artés und I. Alejandre. „Analysis of optical linear encoders’ errors under vibration at different mounting conditions“. Measurement 44, Nr. 8 (Oktober 2011): 1367–80. http://dx.doi.org/10.1016/j.measurement.2011.05.004.
Der volle Inhalt der QuelleBeintema, Gerben I., Roland Toth und Maarten Schoukens. „Non-linear State-space Model Identification from Video Data using Deep Encoders“. IFAC-PapersOnLine 54, Nr. 7 (2021): 697–701. http://dx.doi.org/10.1016/j.ifacol.2021.08.442.
Der volle Inhalt der QuelleFujisawa, Shoji. „Linear encoders applied high resolution technology which is compatible with high speed response“. IEEJ Transactions on Industry Applications 121, Nr. 8 (2001): 887–93. http://dx.doi.org/10.1541/ieejias.121.887.
Der volle Inhalt der QuelleSawabe, M., F. Maeda, Y. Yamaryo, T. Simomura, Y. Saruki, T. Kubo, H. Sakai und S. Aoyagi. „A new vacuum interferometric comparator for calibrating the fine linear encoders and scales“. Precision Engineering 28, Nr. 3 (Juli 2004): 320–28. http://dx.doi.org/10.1016/j.precisioneng.2003.11.007.
Der volle Inhalt der QuelleAshokaraj, Immanuel, Antonios Tsourdos, Peter Silson und Brian White. „SENSOR BASED ROBOT LOCALISATION AND NAVIGATION: USING INTERVAL ANALYSIS AND NONLINEAR KALMAN FILTERS.“ Transactions of the Canadian Society for Mechanical Engineering 29, Nr. 2 (Juni 2005): 211–27. http://dx.doi.org/10.1139/tcsme-2005-0014.
Der volle Inhalt der QuelleLi, Qi Peng, und Ping Fang. „A Linear-Encoder-Based Displacement Sensing Approach for Cost-Sensitive Applications“. Applied Mechanics and Materials 44-47 (Dezember 2010): 1095–98. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.1095.
Der volle Inhalt der QuelleKajima, Mariko, und Kaoru Minoshima. „Calibration of linear encoders with sub-nanometer uncertainty using an optical-zooming laser interferometer“. Precision Engineering 38, Nr. 4 (Oktober 2014): 769–74. http://dx.doi.org/10.1016/j.precisioneng.2014.04.004.
Der volle Inhalt der QuelleHao, Guangbo. „A Multiaxis, Large-Output, Sensing Framework of Integrating Linear Optical Encoders for Nanopositioning Systems“. IEEE Sensors Letters 1, Nr. 3 (Juni 2017): 1–4. http://dx.doi.org/10.1109/lsens.2017.2697074.
Der volle Inhalt der QuelleLee, Chih-Kung, Chyan-Chyi Wu, Shih-Jui Chen, Liang-Bin Yu, You-Chia Chang, Yeong-Feng Wang, Jau-Yu Chen und Jeremy Wen-Jong Wu. „Design and construction of linear laser encoders that possess high tolerance of mechanical runout“. Applied Optics 43, Nr. 31 (01.11.2004): 5754. http://dx.doi.org/10.1364/ao.43.005754.
Der volle Inhalt der QuelleZhang, Peng, und Frans M. J. Willems. „On the Downlink Capacity of Cell-Free Massive MIMO with Constrained Fronthaul Capacity“. Entropy 22, Nr. 4 (07.04.2020): 418. http://dx.doi.org/10.3390/e22040418.
Der volle Inhalt der QuelleHan, Yaodong, Kai Ni, Xinghui Li, Guanhao Wu, Kangning Yu, Qian Zhou und Xiaohao Wang. „An FPGA Platform for Next-Generation Grating Encoders“. Sensors 20, Nr. 8 (16.04.2020): 2266. http://dx.doi.org/10.3390/s20082266.
Der volle Inhalt der QuelleKiryanov, A. V., V. P. Kiryanov und V. V. Chukanov. „Algorithms of Interpolation of Quadrature Signals for High-Resolution Encoders of Linear and Angular Displacements“. Optoelectronics, Instrumentation and Data Processing 55, Nr. 1 (Januar 2019): 52–58. http://dx.doi.org/10.3103/s8756699019010096.
Der volle Inhalt der QuelleGiniotis, Vytautas, Mindaugas Rybokas, Gintaras Dmitrijev, Deividas Sabaitis, Lauryna Šiaudinytė und Justinas Janulevičius. „Mechatronic Elements for Measuring Systems“. Solid State Phenomena 199 (März 2013): 332–37. http://dx.doi.org/10.4028/www.scientific.net/ssp.199.332.
Der volle Inhalt der QuelleHiggott, Oscar, Matthew Wilson, James Hefford, James Dborin, Farhan Hanif, Simon Burton und Dan E. Browne. „Optimal local unitary encoding circuits for the surface code“. Quantum 5 (05.08.2021): 517. http://dx.doi.org/10.22331/q-2021-08-05-517.
Der volle Inhalt der QuelleDomajnko, Dora, und Dejan Križaj. „Lagging-Domain Model for Compensation of Hysteresis of xMR Sensors in Positioning Applications“. Sensors 18, Nr. 7 (14.07.2018): 2281. http://dx.doi.org/10.3390/s18072281.
Der volle Inhalt der QuelleGao, Quanxue, Huanhuan Lian, Qianqian Wang und Gan Sun. „Cross-Modal Subspace Clustering via Deep Canonical Correlation Analysis“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 04 (03.04.2020): 3938–45. http://dx.doi.org/10.1609/aaai.v34i04.5808.
Der volle Inhalt der QuelleSharrab, Yousef O., Mohammad Alsmirat, Bilal Hawashin und Nabil Sarhan. „Machine learning-based energy consumption modeling and comparison of H.264/AVC and google VP8 encoders“. International Journal of Electrical and Computer Engineering (IJECE) 11, Nr. 2 (01.04.2021): 1303. http://dx.doi.org/10.11591/ijece.v11i2.pp1303-1310.
Der volle Inhalt der QuelleHori, Yasuaki, Satoshi Gonda, Youichi Bitou, Akihiro Watanabe und Koutaro Nakamura. „Periodic error evaluation system for linear encoders using a homodyne laser interferometer with 10 picometer uncertainty“. Precision Engineering 51 (Januar 2018): 388–92. http://dx.doi.org/10.1016/j.precisioneng.2017.09.009.
Der volle Inhalt der QuelleYu, Haoyu, Hongzhong Liu, Xuan Li, Guoyong Ye, Yongsheng Shi, Lei Yin, Weitao Jiang, Bangdao Chen und Xiaokang Liu. „Calibration of non-contact incremental linear encoders using a macro–micro dual-drive high-precision comparator“. Measurement Science and Technology 26, Nr. 9 (30.07.2015): 095103. http://dx.doi.org/10.1088/0957-0233/26/9/095103.
Der volle Inhalt der QuelleNguyen, Ha Xuan, Thuong Ngoc-Cong Tran, Jae Wan Park und Jae Wook Jeon. „An Adaptive Linear-Neuron-Based Third-Order PLL to Improve the Accuracy of Absolute Magnetic Encoders“. IEEE Transactions on Industrial Electronics 66, Nr. 6 (Juni 2019): 4639–49. http://dx.doi.org/10.1109/tie.2018.2866088.
Der volle Inhalt der QuelleArifoglu, Damla, Yan Wang und Abdelhamid Bouchachia. „Detection of Dementia-Related Abnormal Behaviour Using Recursive Auto-Encoders“. Sensors 21, Nr. 1 (02.01.2021): 260. http://dx.doi.org/10.3390/s21010260.
Der volle Inhalt der Quelle