Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Linear and non-linear problems.

Zeitschriftenartikel zum Thema „Linear and non-linear problems“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Linear and non-linear problems" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Mira, Pablo, und Manuel Pastor. „Non linear problems: Introduction“. Revue Française de Génie Civil 6, Nr. 6 (Januar 2002): 1019–36. http://dx.doi.org/10.1080/12795119.2002.9692729.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Baradokas, Petras, Edvard Michnevic und Leonidas Syrus. „LINEAR AND NON‐LINEAR PROBLEMS OF PLATE DYNAMICS“. Aviation 11, Nr. 4 (31.12.2007): 9–13. http://dx.doi.org/10.3846/16487788.2007.9635971.

Der volle Inhalt der Quelle
Annotation:
This paper presents a comparative analysis of linear and non‐linear problems of plate dynamics. By expressing the internal friction coefficient of the material by power polynomial γ= γ0 + γ1ϵ0 + γ2ϵ0 2+…, we assume γ= γ0 = const for a linear problem. When at least two polynomial terms are taken, a non‐linear problem is obtained. The calculations of resonance amplitudes of a rectangular plate yielded 3 per cent error: a linear problem yields a higher resonance amplitude. Using the Ritz method and the theory of complex numbers made the calculations. Similar methods of calculation can be used in solving the dynamic problems of thin‐walled vehicle structures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mira, Pablo, und Manuel Pastor. „Non linear problems: Advanced Techniques“. Revue Française de Génie Civil 6, Nr. 6 (Januar 2002): 1069–81. http://dx.doi.org/10.1080/12795119.2002.9692732.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Barberou, Nicolas, Marc Garbey, Matthias Hess, Michael M. Resch, Tuomo Rossi, Jari Toivanen und Damien Tromeur-Dervout. „Efficient metacomputing of elliptic linear and non-linear problems“. Journal of Parallel and Distributed Computing 63, Nr. 5 (Mai 2003): 564–77. http://dx.doi.org/10.1016/s0743-7315(03)00003-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ahmad, Jamshad, und Mariyam Mushtaq. „Exact Solution of Linear and Non-linear Goursat Problems“. Universal Journal of Computational Mathematics 3, Nr. 1 (Februar 2015): 14–17. http://dx.doi.org/10.13189/ujcmj.2015.030103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Matvienko, Yu G., und E. M. Morozov. „Some problems in linear and non-linear fracture mechanics“. Engineering Fracture Mechanics 28, Nr. 2 (Januar 1987): 127–38. http://dx.doi.org/10.1016/0013-7944(87)90208-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Beals, R., und R. R. Coifman. „Linear spectral problems, non-linear equations and the δ-method“. Inverse Problems 5, Nr. 2 (01.04.1989): 87–130. http://dx.doi.org/10.1088/0266-5611/5/2/002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Godin, Paul. „Subelliptic Non Linear Oblique Derivative Problems“. American Journal of Mathematics 107, Nr. 3 (Juni 1985): 591. http://dx.doi.org/10.2307/2374371.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shestopalov, Youri V. „NON-LINEAR EIGENVALUE PROBLEMS IN ELECTRODYNAMICS“. Electromagnetics 13, Nr. 2 (Januar 1993): 133–43. http://dx.doi.org/10.1080/02726349308908338.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gill, Peter N. G. „Non‐linear proportionality in science problems“. International Journal of Mathematical Education in Science and Technology 24, Nr. 3 (Mai 1993): 365–71. http://dx.doi.org/10.1080/0020739930240305.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Salon, S., und B. Istfan. „Inverse non-linear finite element problems“. IEEE Transactions on Magnetics 22, Nr. 5 (September 1986): 817–18. http://dx.doi.org/10.1109/tmag.1986.1064485.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Boyadzhiev, Georgi, Enrico Brandmayr, Tommaso Pinat und Giuliano F.Panza. „Optimization for non-linear inverse problems“. RENDICONTI LINCEI 19, Nr. 1 (April 2008): 17–43. http://dx.doi.org/10.1007/s12210-008-0002-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Boyadzhiev, Georgi, Enrico Brandmayr, Tommaso Pinat und Giuliano F. Panza. „Optimization for non-linear inverse problems“. RENDICONTI LINCEI 19, Nr. 2 (Juli 2008): 209–11. http://dx.doi.org/10.1007/s12210-008-0013-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

De Carvalho Neves, A. „Computational methods for non-linear problems“. Advances in Engineering Software 14, Nr. 4 (Januar 1992): 305. http://dx.doi.org/10.1016/0965-9978(92)90011-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Sebastiani, P. „Experimental design for non-linear problems.“ Insurance: Mathematics and Economics 17, Nr. 3 (April 1996): 235. http://dx.doi.org/10.1016/0167-6687(96)82368-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Zin'kova, V., und A. Yuriev. „NON LINEAR PROBLEMS OF OBLIQUE BENDING“. Bulletin of Belgorod State Technological University named after. V. G. Shukhov 8, Nr. 11 (21.09.2023): 37–45. http://dx.doi.org/10.34031/2071-7318-2023-8-11-37-45.

Der volle Inhalt der Quelle
Annotation:
Building art consists in the unity of the function of the structure and its form, embodied in the material. The bearing capacity of the material depends entirely on the chosen form. This is expressed in the rational correlation of load and support. At the level of determining the topology of a structure, the process of “enveloping” a force field in natural systems by matter is considered as an analogy. This phenomenon correlates with the technical support of the oblique bend, which is typical, in particular, for the run of the roof of the structure. A channel that is rational under conditions of direct bending loses its effectiveness with oblique bending. The best performance is found in the Z-profile with a vertical wall. The orientation of its shelves corresponds to the principle of material saturation of the areas adjacent to the external force field. But even this profile does not fully satisfy the most effective resistance to oblique bending. The introduction of an inclined wall makes it possible to bring the material of the shelves closer to the external force field. A comparison of the functioning of the mentioned profiles is given on numerical examples, united by the designated cross-sectional area. For a Z-profile with an inclined wall, formulas for geometric characteristics are derived. The angle of inclination of the wall is determined from the condition of transforming an oblique bend into a straight bend, that is, the coincidence of the trace of the force plane with the main axis of the beam section. In the framework of the above studies, we can talk about a decrease in stress by about 80%. It is also oblique bending at nonlinear physical law considererd.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Zborovsky, Garold E., und Polina A. Ambarova. „From Non-Linear Knowledge to Non-Linear Trust“. Sociological Journal 25, Nr. 3 (2019): 176–87. http://dx.doi.org/10.19181/socjour.2019.25.3.6683.

Der volle Inhalt der Quelle
Annotation:
This article is devoted to disclosing the idea of trusting knowledge, which is laid out in the monograph “Trusting knowledge in conditions of social turbulence: risks, vulnerabilities, security challenges”. The genre of the article/review allowed for presenting the key positions of the sociological conception and the results of empirical research conducted by the book’s authors (the research team of MGIMO University under the guidance of Professor S.A. Kravchenko), as well as for interpreting them while taking into account our own theoretical and methodological approaches to the phenomenon of trust and the results of its research. The article deals with concepts that have become the basis for the book — the concept of institutional trust in knowledge systems, and the concept of how the dynamics of institutional trust impact the system of producing and spreading knowledge. Highlighted is the novelty and originality of the author’s interpretations of scientific knowledge dynamics — from linear to non-linear knowledge. Following this, we present our own interpretations of the problem of nonlinear trust — as a response to the ideas of the monograph’s authors on the dynamics of reflexive trust (from linear to non-linear). Special attention is paid to the criteria for evaluating scientific knowledge which bears credibility in the eyes of various social actors. The reflections on the book “Trusting knowledge in conditions of social turbulence: risks, vulnerabilities, security challenges” which this article/review contains fit into the broad context of the theoretical and methodological problems with studying the phenomenon of trust. Shown are possible paths for developing sociological research of trust, while taking into account the ideas presented in the monograph.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Anikonov, Yu E. „Inverse problems for linear and non-linear equations of mathematical physics“. Journal of Inverse and Ill-posed Problems 13, Nr. 4 (Juli 2005): 307–15. http://dx.doi.org/10.1515/156939405775201655.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Idczak, Dariusz. „Bang–bang principle for linear and non-linear Goursat–Darboux problems“. International Journal of Control 76, Nr. 11 (Juli 2003): 1089–94. http://dx.doi.org/10.1080/0020717031000123283.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Iqbal, Salma, Naveed Yaqoob und Muhammad Gulistan. „Multi-Objective Non-Linear Programming Problems in Linear Diophantine Fuzzy Environment“. Axioms 12, Nr. 11 (13.11.2023): 1048. http://dx.doi.org/10.3390/axioms12111048.

Der volle Inhalt der Quelle
Annotation:
Due to various unpredictable factors, a decision maker frequently experiences uncertainty and hesitation when dealing with real-world practical optimization problems. At times, it’s necessary to simultaneously optimize a number of non-linear and competing objectives. Linear Diophantine fuzzy numbers are used to address the uncertain parameters that arise in these circumstances. The objective of this manuscript is to present a method for solving a linear Diophantine fuzzy multi-objective nonlinear programming problem (LDFMONLPP). All the coefficients of the nonlinear multi-objective functions and the constraints are linear Diophantine fuzzy numbers (LDFNs). Here we find the solution of the nonlinear programming problem by using Karush-Kuhn-Tucker condition. A numerical example is presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Dipierro, Serena, und Enrico Valdinoci. „(Non)local and (non)linear free boundary problems“. Discrete & Continuous Dynamical Systems - S 11, Nr. 3 (2018): 465–76. http://dx.doi.org/10.3934/dcdss.2018025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Ramzan, Siti Hajar. „Crafting Linear Motion Problems for Problem- Based Learning Physics Classes“. International Journal of Psychosocial Rehabilitation 24, Nr. 5 (20.04.2020): 5426–37. http://dx.doi.org/10.37200/ijpr/v24i5/pr2020249.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Eaves, B. Curtis, und Uriel G. Rothblum. „Linear Problems and Linear Algorithms“. Journal of Symbolic Computation 20, Nr. 2 (August 1995): 207–14. http://dx.doi.org/10.1006/jsco.1995.1047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

FAIBUSOVICH, L. E. „Explicitly solvable non-linear optimal control problems“. International Journal of Control 48, Nr. 6 (Dezember 1988): 2507–26. http://dx.doi.org/10.1080/00207178808906344.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Loubes, Jean-Michel, und Carenne Ludeña. „Penalized estimators for non linear inverse problems“. ESAIM: Probability and Statistics 14 (Juli 2010): 173–91. http://dx.doi.org/10.1051/ps:2008024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

GILBERT, J. C. „NON-LINEAR OPTIMIZATION AND LARGE-SCALE PROBLEMS“. Engineering Optimization 18, Nr. 1-3 (November 1991): 5–21. http://dx.doi.org/10.1080/03052159108941009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

MERCKX, CHRISTIAN. „NON-LINEAR PROGRAMMING IN GROUNDWATER DECONTAMINATION PROBLEMS“. Engineering Optimization 18, Nr. 1-3 (November 1991): 121–36. http://dx.doi.org/10.1080/03052159108941016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Jordan, A., S. Khaldi, M. Benmouna und A. Borucki. „Study of non-linear heat transfer problems“. Revue de Physique Appliquée 22, Nr. 1 (1987): 101–5. http://dx.doi.org/10.1051/rphysap:01987002201010100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Ross, G. J. S. „Estimation problems of non-linear functional relationships“. Journal of Applied Statistics 17, Nr. 3 (Januar 1990): 299–306. http://dx.doi.org/10.1080/02664769000000002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Duc, Duong Minh, und Nguyen Quang Huy. „Non-uniformly asymptotically linear p-Laplacian problems“. Nonlinear Analysis: Theory, Methods & Applications 92 (November 2013): 183–97. http://dx.doi.org/10.1016/j.na.2013.06.020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Ghosh, S. K. „Finite element method for non-linear problems“. Journal of Mechanical Working Technology 16, Nr. 2 (April 1988): 218–19. http://dx.doi.org/10.1016/0378-3804(88)90165-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Bakushinskii, A. B. „Iterative regularizing algorithms for non-linear problems“. USSR Computational Mathematics and Mathematical Physics 27, Nr. 2 (Januar 1987): 196–99. http://dx.doi.org/10.1016/0041-5553(87)90177-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Arora, S. R., und Anuradha Gaur. „On the Non-Linear Multilevel Programming Problems“. OPSEARCH 43, Nr. 1 (März 2006): 49–62. http://dx.doi.org/10.1007/bf03398760.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Mingyuan, He. „Perturbation solutions for non-linear crack problems“. Acta Mechanica Sinica 4, Nr. 1 (Februar 1988): 15–21. http://dx.doi.org/10.1007/bf02487693.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Carando, Daniel, Damián Pinasco und Jorge Tomás Rodríguez. „Non-linear plank problems and polynomial inequalities“. Revista Matemática Complutense 30, Nr. 3 (18.01.2017): 507–23. http://dx.doi.org/10.1007/s13163-017-0220-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Adjali, M. H., und M. Laurent. „Thermal conductivity estimation in non-linear problems“. International Journal of Heat and Mass Transfer 50, Nr. 23-24 (November 2007): 4623–28. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.03.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Heijnekamp, J. J., M. S. Krol und F. Verhulst. „Averaging in non-linear advective transport problems“. Mathematical Methods in the Applied Sciences 18, Nr. 6 (Mai 1995): 437–48. http://dx.doi.org/10.1002/mma.1670180603.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Shushnov, M. S., T. V. Shushnova, A. M. Onoprienko und N. O. Abrosimova. „Non-linear Acoustic Problems in Loudspeaker Design“. Herald of the Siberian State University of Telecommunications and Information Science 18, Nr. 1 (17.12.2023): 78–90. http://dx.doi.org/10.55648/1998-6920-2024-18-1-78-90.

Der volle Inhalt der Quelle
Annotation:
The article deals with the issues of non-linear acoustics. A mathematical model of non-linear distortions of the acoustic path has been compiled in relation to the operation of a loudspeaker in a piston mode. The results of experimental measurements are presented and analyzed. Recommendations are given to reduce distortion in the construction of high-quality acoustic systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Dassios, George. „What non-linear methods offered to linear problems? The Fokas transform method“. International Journal of Non-Linear Mechanics 42, Nr. 1 (Januar 2007): 146–56. http://dx.doi.org/10.1016/j.ijnonlinmec.2006.11.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Mehra, Mani, und Vivek Kumar. „Fast wavelet-Taylor Galerkin method for linear and non-linear wave problems“. Applied Mathematics and Computation 189, Nr. 2 (Juni 2007): 1292–99. http://dx.doi.org/10.1016/j.amc.2006.12.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Ge, Renpu. „Solving linear programming problems via linear minimax problems“. Applied Mathematics and Computation 46, Nr. 1 (November 1991): 59–77. http://dx.doi.org/10.1016/0096-3003(91)90101-r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Battaglia, Jean-Luc. „Linear and non-linear thermal system identification based on the integral of non-integer order — Application to solve inverse heat conduction linear and non-linear problems“. International Journal of Thermal Sciences 197 (März 2024): 108840. http://dx.doi.org/10.1016/j.ijthermalsci.2023.108840.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

PAȘA, Tatiana. „THE GENETIC ALGORITHM FOR SOLVING THE NON-LINEAR TRANSPORTATION PROBLEM“. Review of the Air Force Academy 16, Nr. 2 (31.10.2018): 37–44. http://dx.doi.org/10.19062/1842-9238.2018.16.2.4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

OKAMOTO, Kohta, Naoki TAKANO und Yuta SHIMIZU. „F407 Practical Monte Carlo Simulation for Highly Non-Linear Problem“. Proceedings of The Computational Mechanics Conference 2011.24 (2011): _F—60_—_F—61_. http://dx.doi.org/10.1299/jsmecmd.2011.24._f-60_.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Zhekov, Zhivko, und Garo Mardirossian. „NON-LINEAR RECEIVER REACTION OF IRRADIATION WITH COMPLEX SPECTRAL COMPOSITION“. Journal Scientific and Applied Research 19, Nr. 1 (05.05.2020): 5–10. http://dx.doi.org/10.46687/jsar.v19i1.287.

Der volle Inhalt der Quelle
Annotation:
One of the basic problems in elaboration of spectro-photometer for atmospheric ozone exploration at the Space Research Institute - Bulgarian Academy of Sciences seems to be the necessity of calculation of output signal of the irradiating receiver by fixed spectral composition and intensity. The calculation wouldn’t be difficult if the intensity values range is situated on the linear part of the irradiating receiver energetic characteristic. To the end, the absolutely spectral characteristic of receiver sensibility and spectral density of the treated receiver intensity has to be known. The paper is dedicated to the elaboration and the obtained results by offering and creating a method for definition the non-linear irradiating receiver output signal by fixed spectral composition and intensity. In the paper the obtained schemes and equations in the process of elaboration are presented characterizing the reaction of the photo-receiver complex spectral composition with nonlinear energetic characteristic.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Šeda, Valter. „Generalized boundary value problems with linear growth“. Mathematica Bohemica 123, Nr. 4 (1998): 385–404. http://dx.doi.org/10.21136/mb.1998.125969.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Nguyen, D. T., O. O. Storaasli, E. A. Carmona, M. Al-Nasra, Y. Zhang, M. A. Baddourah und T. K. Agarwal. „Parallel-vector computation for linear structural analysis and non-linear unconstrained optimization problems“. Computing Systems in Engineering 2, Nr. 2-3 (Januar 1991): 175–82. http://dx.doi.org/10.1016/0956-0521(91)90018-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Mohammadi, Adel, Nader Nariman-Zadeh und Ali Jamali. „The archived-based genetic programming for optimal design of linear/non-linear controllers“. Transactions of the Institute of Measurement and Control 42, Nr. 8 (20.01.2020): 1475–91. http://dx.doi.org/10.1177/0142331219891551.

Der volle Inhalt der Quelle
Annotation:
Evaluation of control signal function is one of the critical subjects in the optimal control problems. The optimal control is usually obtained by optimizing a performance index that is a weighted combination of control effort and state trajectories in the quadratic form, typically known as quadratic performance index (QPI). For the simple case of linear time-invariant (LTI) systems, problems are commonly solved using the well-established governing Riccati equation; however, obtaining the analytical solutions for linear time-variant (LTV) and nonlinear systems has always been highly debated in the optimal control problems. In this study, a newly developed type of Genetic Programming called the archived-based genetic programming (AGP) is presented. Using this algorithm, the analytical solutions for any type of optimal control problems can be obtained faster and more efficiently than the ordinary GPs. Subsequently, due to the inefficiency of QPI in capturing the general behavior of signals, a new performance index named the absolute performance index (API) is proposed in this study. Since the developed AGP algorithm could find the analytical solutions irrespective of the conventional mathematical calculations, it can be effectively implemented to solve the introduced API measures. According to the analytical results, it is observed that in a given problem, the solutions of API are more compatible with the design goals compared with QPI. Furthermore, it is shown that some new forms of the control signals such as impulse solutions, which may not be obtained using QPI, can only be estimated using API in defining the optimal control problems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Vu, Pham Loi. „Cauchy problems for a system of non-linear equations and for the non-linear Schrodinger equation“. Inverse Problems 10, Nr. 2 (01.04.1994): 415–29. http://dx.doi.org/10.1088/0266-5611/10/2/015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Ikelle, Luc T., Are Osen, Lasse Amundsen und Yunqing Shen. „Non-iterative multiple-attenuation methods: linear inverse solutions to non-linear inverse problems - II. BMG approximation“. Geophysical Journal International 159, Nr. 3 (Dezember 2004): 923–30. http://dx.doi.org/10.1111/j.1365-246x.2004.02478.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie