Auswahl der wissenschaftlichen Literatur zum Thema „Linear and non-linear problems“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Linear and non-linear problems" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Linear and non-linear problems"

1

Mira, Pablo, und Manuel Pastor. „Non linear problems: Introduction“. Revue Française de Génie Civil 6, Nr. 6 (Januar 2002): 1019–36. http://dx.doi.org/10.1080/12795119.2002.9692729.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Baradokas, Petras, Edvard Michnevic und Leonidas Syrus. „LINEAR AND NON‐LINEAR PROBLEMS OF PLATE DYNAMICS“. Aviation 11, Nr. 4 (31.12.2007): 9–13. http://dx.doi.org/10.3846/16487788.2007.9635971.

Der volle Inhalt der Quelle
Annotation:
This paper presents a comparative analysis of linear and non‐linear problems of plate dynamics. By expressing the internal friction coefficient of the material by power polynomial γ= γ0 + γ1ϵ0 + γ2ϵ0 2+…, we assume γ= γ0 = const for a linear problem. When at least two polynomial terms are taken, a non‐linear problem is obtained. The calculations of resonance amplitudes of a rectangular plate yielded 3 per cent error: a linear problem yields a higher resonance amplitude. Using the Ritz method and the theory of complex numbers made the calculations. Similar methods of calculation can be used in solving the dynamic problems of thin‐walled vehicle structures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mira, Pablo, und Manuel Pastor. „Non linear problems: Advanced Techniques“. Revue Française de Génie Civil 6, Nr. 6 (Januar 2002): 1069–81. http://dx.doi.org/10.1080/12795119.2002.9692732.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Barberou, Nicolas, Marc Garbey, Matthias Hess, Michael M. Resch, Tuomo Rossi, Jari Toivanen und Damien Tromeur-Dervout. „Efficient metacomputing of elliptic linear and non-linear problems“. Journal of Parallel and Distributed Computing 63, Nr. 5 (Mai 2003): 564–77. http://dx.doi.org/10.1016/s0743-7315(03)00003-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ahmad, Jamshad, und Mariyam Mushtaq. „Exact Solution of Linear and Non-linear Goursat Problems“. Universal Journal of Computational Mathematics 3, Nr. 1 (Februar 2015): 14–17. http://dx.doi.org/10.13189/ujcmj.2015.030103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Matvienko, Yu G., und E. M. Morozov. „Some problems in linear and non-linear fracture mechanics“. Engineering Fracture Mechanics 28, Nr. 2 (Januar 1987): 127–38. http://dx.doi.org/10.1016/0013-7944(87)90208-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Beals, R., und R. R. Coifman. „Linear spectral problems, non-linear equations and the δ-method“. Inverse Problems 5, Nr. 2 (01.04.1989): 87–130. http://dx.doi.org/10.1088/0266-5611/5/2/002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Godin, Paul. „Subelliptic Non Linear Oblique Derivative Problems“. American Journal of Mathematics 107, Nr. 3 (Juni 1985): 591. http://dx.doi.org/10.2307/2374371.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shestopalov, Youri V. „NON-LINEAR EIGENVALUE PROBLEMS IN ELECTRODYNAMICS“. Electromagnetics 13, Nr. 2 (Januar 1993): 133–43. http://dx.doi.org/10.1080/02726349308908338.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gill, Peter N. G. „Non‐linear proportionality in science problems“. International Journal of Mathematical Education in Science and Technology 24, Nr. 3 (Mai 1993): 365–71. http://dx.doi.org/10.1080/0020739930240305.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Linear and non-linear problems"

1

Minne, Andreas. „Non-linear Free Boundary Problems“. Doctoral thesis, KTH, Matematik (Avd.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-178110.

Der volle Inhalt der Quelle
Annotation:
This thesis consists of an introduction and four research papers related to free boundary problems and systems of fully non-linear elliptic equations. Paper A and Paper B prove optimal regularity of solutions to general elliptic and parabolic free boundary problems, where the operators are fully non-linear and convex. Furthermore, it is proven that the free boundary is continuously differentiable around so called "thick" points, and that the free boundary touches the fixed boundary tangentially in two dimensions. Paper C analyzes singular points of solutions to perturbations of the unstable obstacle problem, in three dimensions. Blow-up limits are characterized and shown to be unique. The free boundary is proven to lie close to the zero-level set of the corresponding blow-up limit. Finally, the structure of the singular set is analyzed. Paper D discusses an idea on how existence and uniqueness theorems concerning quasi-monotone fully non-linear elliptic systems can be extended to systems that are not quasi-monotone.

QC 20151210

APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wokiyi, Dennis. „Non-linear inverse geothermal problems“. Licentiate thesis, Linköpings universitet, Matematik och tillämpad matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-143031.

Der volle Inhalt der Quelle
Annotation:
The inverse geothermal problem consist of estimating the temperature distribution below the earth’s surface using temperature and heat-flux measurements on the earth’s surface. The problem is important since temperature governs a variety of the geological processes including formation of magmas, minerals, fosil fuels and also deformation of rocks. Mathematical this problem is formulated as a Cauchy problem for an non-linear elliptic equation and since the thermal properties of the rocks depend strongly on the temperature, the problem is non-linear. This problem is ill-posed in the sense that it does not satisfy atleast one of Hadamard’s definition of well-posedness. We formulated the problem as an ill-posed non-linear operator equation which is defined in terms of solving a well-posed boundary problem. We demonstrate existence of a unique solution to this well-posed problem and give stability estimates in appropriate function spaces. We show that the operator equation is well-defined in appropriate function spaces. Since the problem is ill-posed, regularization is needed to stabilize computations. We demostrate that Tikhonov regularization can be implemented efficiently for solving the operator equation. The algorithm is based on having a code for solving a well- posed problem related to the operator equation. In this study we demostrate that the algorithm works efficiently for 2D calculations but can also be modified to work for 3D calculations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Edlund, Ove. „Solution of linear programming and non-linear regression problems using linear M-estimation methods /“. Luleå, 1999. http://epubl.luth.se/1402-1544/1999/17/index.html.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Toutip, Wattana. „The dual reciprocity boundary element method for linear and non-linear problems“. Thesis, University of Hertfordshire, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369302.

Der volle Inhalt der Quelle
Annotation:
A problem encountered in the boundary element method is the difficulty caused by corners and/or discontinuous boundary conditions. An existing code using standard linear continuous elements is modified to overcome such problems using the multiple node method with an auxiliary boundary collocation approach. Another code is implemented applying the gradient approach as an alternative to handle such problems. Laplace problems posed on variety of domain shapes have been introduced to test the programs. For Poisson problems the programs have been developed using a transformation to a Laplace problem. This method cannot be applied to solve Poissontype equations. The dual reciprocity boundary element method (DRM) which is a generalised way to avoid domain integrals is introduced to solve such equations. The gradient approach to handle corner problems is co-opted in the program using DRM. The program is modified to solve non-linear problems using an iterative method. Newton's method is applied in the program to enhance the accuracy of the results and reduce the number of iterations. The program is further developed to solve coupled Poisson-type equations and such a formulation is considered for the biharmonic problems. A coupled pair of non-linear equations describing the ohmic heating problem is also investigated. Where appropriate results are compared with those from reference solutions or exact solutions. v
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

McKay, Barry. „Wrinkling problems for non-linear elastic membranes“. Thesis, University of Glasgow, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307187.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Baek, Kwang-Hyun. „Non-linear optimisation problems in active control“. Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243131.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Garcia, Francisco Javier. „THREE NON-LINEAR PROBLEMS ON NORMED SPACES“. Kent State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=kent1171042141.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sorour, Ahmed El-Sayed. „Some problems in non-linear open loop systems“. Thesis, University of Kent, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279420.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shikongo, Albert. „Numerical Treatment of Non-Linear singular pertubation problems“. Thesis, Online access, 2007. http://etd.uwc.ac.za/usrfiles/modules/etd/docs/etd_gen8Srv25Nme4_3831_1257936459.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ruggeri, Felipe. „A higher order time domain panel method for linear and weakly non linear seakeeping problems“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3135/tde-09122016-074844/.

Der volle Inhalt der Quelle
Annotation:
This thesis addresses the development of a weakly non-linear Higher Order Time Domain Rankine Panel Method (TDRPM) for the linear and weakly non-linear seakeeping analysis of floating offshore structures, including wave-current interaction effects. A higher order boundary elements method is adopted based on the body geometry description using Non-uniform Rational B-splines (NURBS) formulation, which can be generated by many standard Computed Aided Design (CAD) softwares widely available, and the several computed quantities (velocity potential, free surface elevation and others) are described using a B-spline formulation of arbitrary degree. The problem is formulated considering wave-current-body interactions up to second order effects, these ones considering the terms obtained by interaction of zero/first order quantities. In order to provide numerical stability, the Initial Boundary Value Problem (IBVP) is formulated in terms of the velocity potential and the local acceleration potential, the later used to predict the hydrodynamic pressure accurately. The zeroth order problem is solved using the double-body linearization instead of the Neumman-Kelvin one in order to allow bluff bodies simulation, leading to very complex expressions regarding the m-terms computation. The method adopts the Rankine sources as Green\'s function, which are integrated using Gauss quadrature in the entire domain, but for the self-influence terms that are integrated using a desingularized procedure. The numerical method is verified initially considering simplified geometries (sphere and circular cylinder) for both, first and second-order computations, with and without current effects. The derivatives of the velocity potential are verified by comparing the numerical m-terms to the analytical solutions for a hemisphere under uniform flow. The mean and double frequency drift forces are computed for fixed and floating structures and the quantities involved in these computations (wave runup, velocity field) are also compared to literature results, including the free floating response of a sphere under current effects. Two practical cases are also studied, namely the wave-induced second order responses of a semi-submersible platform and the wavedrift-damping effect evaluated through the equilibrium angle of a turret moored FPSO. For the former, some specific model tests were designed and conducted in a wave-basin.
Essa tese aborda o desenvolvimento de um método de Rankine de ordem alta no domínio do tempo (TDRPM) para o estudo de problemas lineares e fracamente não lineares, incluindo o efeito de corrente, envolvendo sistemas flutuantes. O método de ordem alta desenvolvido considera a geometria do corpo como descrita pelo padrão Non-uniform Rational Basis Spline (NURBS), que está disponível em diverso0s softwares de Computed Aided Design (CAD) disponíveis, sendo as diversas funções (potencial de velocidades, elevação da superfície-livre e outros) descritos usando B-splines de grau arbitrário. O problema é formulado considerando interações onda-corrente-estrutura para efeitos de até segunda ordem, os de ordem superior sendo calculados considerando as interações somente dos termos de ordem inferior. Para garantir a estabilidade numérica, o problema de contorno com valor inicial é formulado0 com relação ao potencial de velocidade e de parcela local do potencial de acelerações, este para garantir cálculos precisos da pressão dinâmica. O problema de ordem zero é resolvido usando a linearização de corpo-duplo ao invés da linearização de Neumman-Kelvin para permitir a análise de corpos rombudos, o que requer o cálculo de termos-m de grande complexidade. O método adota fontes de Rankine como funções de Green, que são integradas através de quadratura de Gauss-Legendre no domínio todo, exceto com relação aos termos de auto-influência que adotasm um procedimento de dessingularização. O método numérico é inicialmente verificado considerando corpos de geometria simplificada (esfera e cilindro), considerando efeitos de primeira e segunda ordens, com e sem corrente. As derivadas do potencial de velocidade são verificadas comparando os termos-m obtidos numericamente com soluções analíticas disponíveis para a esfera em fluído infinito. As forças de deriva média e dupla-frequência são calculadas para estruturas fixas e flutuantes, sendo as funções calculadas (elevação da superfície, campo de velocidade) comparadas com resultados disponíveis na literatura, incluindo o movimento da esfera flutuante sob a ação de corrente e ondas. São também estudados dois casos de aplicação prática, a resposta de segunda ordem de uma plataforma semi-submersível e o efeito de wave-drift damping para o ângulo de equilíbrio de uma plataforma FPSO ancorada através de sistema turred. No caso da semi-submersível, os ensaios foram projetados e realizados em tanque de provas.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Linear and non-linear problems"

1

Prodi, G., Hrsg. Eigenvalues of Non-Linear Problems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10940-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Prodi, G., Hrsg. Problems in Non-Linear Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10998-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

service), SpringerLink (Online, Hrsg. Eigenvalues of Non-Linear Problems. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

service), SpringerLink (Online, Hrsg. Problems in Non-Linear Analysis. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ogden, R. W. Non-linear elastic deformations. Mineola, N.Y: Dover Publications, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rautian, Sergeĭ Glebovich. Kinetic problems of non-linear spectroscopy. Amsterdam, Netherlands: North-Holland, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

J, Owen D. R., Taylor C und Hinton E, Hrsg. Computational methods for non-linear problems. Swansea: Pineridge Press, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Blake, A. P. Approximate linear solutions for non-linear R.E. models: A technique and some problems. London: University of London. Queen Mary College. Department of Economics, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bogdanovich, Alexander. Non-linear dynamic problems for composite cylindrical shells. London: Elsevier Applied Science, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Linear discrete parabolic problems. Boston: Elsevier, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Linear and non-linear problems"

1

Larson, Mats G., und Fredrik Bengzon. „Non-linear Problems“. In Texts in Computational Science and Engineering, 225–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33287-6_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Poler, Raúl, Josefa Mula und Manuel Díaz-Madroñero. „Non-Linear Programming“. In Operations Research Problems, 87–113. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5577-5_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jiji, Latif M. „NON-LINEAR CONDUCTION PROBLEMS“. In Heat Conduction, 215–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01267-9_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Akbarov, S. D., und A. N. Guz. „Geometrically Non-Linear Problems“. In Mechanics of Curved Composites, 335–53. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-9504-4_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Fursaev, Dmitri, und Dmitri Vassilevich. „Non-linear Spectral Problems“. In Theoretical and Mathematical Physics, 115–24. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0205-9_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gupta, Neha, und Irfan Ali. „Non-Linear Optimization Problems“. In Optimization with LINGO-18 Problems and Applications, 115–40. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003048893-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Jiji, Latif M., und Amir H. Danesh-Yazdi. „Non-linear Conduction Problems“. In Heat Conduction, 225–48. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-43740-3_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shah, Nita H., und Poonam Prakash Mishra. „One-Dimensional Optimization Problem“. In Non-Linear Programming, 1–14. First edition. | Boca Raton, FL: CRC Press, an imprint of Taylor & Francis Group, LLC, 2021. | Series: Mathematical engineering, manufacturing, and management sciences: CRC Press, 2020. http://dx.doi.org/10.4324/9781003105213-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shah, Nita H., und Poonam Prakash Mishra. „One-Dimensional Optimization Problem“. In Non-Linear Programming, 1–14. First edition. | Boca Raton, FL: CRC Press, an imprint of Taylor & Francis Group, LLC, 2021. | Series: Mathematical engineering, manufacturing, and management sciences: CRC Press, 2020. http://dx.doi.org/10.1201/9781003105213-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Surana, Karan S., und J. N. Reddy. „Non-Linear Differential Operators“. In The Finite Element Method for Boundary Value Problems, 419–92. Boca Raton : CRC Press, 2017.: CRC Press, 2016. http://dx.doi.org/10.1201/9781315365718-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Linear and non-linear problems"

1

Chang, R. J. „Optimal Linear Feedback Control for Non-Linear-Non-Quadratic-Non-Gaussian Problems“. In 1990 American Control Conference. IEEE, 1990. http://dx.doi.org/10.23919/acc.1990.4790782.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

LASSAS, MATTI. „INVERSE PROBLEMS FOR LINEAR AND NON-LINEAR HYPERBOLIC EQUATIONS“. In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0199.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Muller, Orna, und Bruria Haberman. „A non-linear approach to solving linear algorithmic problems“. In 2010 IEEE Frontiers in Education Conference (FIE). IEEE, 2010. http://dx.doi.org/10.1109/fie.2010.5673643.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Cooper, G. R. J. „Optimising Overdetermined Non-linear Inverse Problems“. In 75th EAGE Conference and Exhibition incorporating SPE EUROPEC 2013. Netherlands: EAGE Publications BV, 2013. http://dx.doi.org/10.3997/2214-4609.20130121.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mosquera, Alejandro, und Santiago Hernández. „Linear and Non Linear Analytical Sensitivity Analysis of Eigenvalue Problems“. In 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-5433.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Balitskiy, Gleb, Alexey Frolov und Pavel Rybin. „Linear Programming Decoding of Non-Linear Sparse-Graph Codes“. In 2021 XVII International Symposium Problems of Redundancy in Information and Control Systems (REDUNDANCY). IEEE, 2021. http://dx.doi.org/10.1109/redundancy52534.2021.9606454.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gupta, Arya Tanmay, und Sandeep S. Kulkarni. „Inducing Lattices in Non-Lattice-Linear Problems“. In 2023 42nd International Symposium on Reliable Distributed Systems (SRDS). IEEE, 2023. http://dx.doi.org/10.1109/srds60354.2023.00031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Park, Dae-Geun, Jin-Hak Jang, Sung-An Kim und Yun-Hyun Cho. „Modeling of Non-Linear Analysis of Dynamic Characteristics of Linear Compressor“. In 2012 Sixth International Conference on Electromagnetic Field Problems and Applications (ICEF). IEEE, 2012. http://dx.doi.org/10.1109/icef.2012.6310292.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Anderson Kuzma, Heidi L. „The “kernel trick”: Using linear algorithms to solve non‐linear geophysical problems“. In SEG Technical Program Expanded Abstracts 2002. Society of Exploration Geophysicists, 2002. http://dx.doi.org/10.1190/1.1817208.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ansari, Mohd Samar, und Syed Atiqur Rahman. „A DVCC-based non-linear analog circuit for solving linear programming problems“. In 2010 International Conference on Power, Control and Embedded Systems (ICPCES). IEEE, 2010. http://dx.doi.org/10.1109/icpces.2010.5698617.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Linear and non-linear problems"

1

Li, Zhilin, und Kazufumi Ito. Theoretical and Numerical Analysis for Non-Linear Interface Problems. Fort Belvoir, VA: Defense Technical Information Center, April 2007. http://dx.doi.org/10.21236/ada474058.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hou, Elizabeth Mary, und Earl Christopher Lawrence. Variational Methods for Posterior Estimation of Non-linear Inverse Problems. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475317.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Benigno, Pierpaolo, und Michael Woodford. Linear-Quadratic Approximation of Optimal Policy Problems. Cambridge, MA: National Bureau of Economic Research, November 2006. http://dx.doi.org/10.3386/w12672.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mangasarian, O. L., und T. H. Shiau. Error Bounds for Monotone Linear Complementarity Problems. Fort Belvoir, VA: Defense Technical Information Center, September 1985. http://dx.doi.org/10.21236/ada160975.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Shiau, Tzong H. Iterative Methods for Linear Complementary and Related Problems. Fort Belvoir, VA: Defense Technical Information Center, Mai 1989. http://dx.doi.org/10.21236/ada212848.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Brigola, R., und A. Keller. On Functional Estimates for Ill-Posed Linear Problems. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada198004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rundell, William, und Michael S. Pilant. Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations. Fort Belvoir, VA: Defense Technical Information Center, September 1992. http://dx.doi.org/10.21236/ada256012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hendon, Raymond C., und Scott D. Ramsey. Radiation Hydrodynamics Test Problems with Linear Velocity Profiles. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1049354.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pilant, Michael S., und William Rundell. Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1989. http://dx.doi.org/10.21236/ada218462.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

ZOTOVA, V. A., E. G. SKACHKOVA und T. D. FEOFANOVA. METHODOLOGICAL FEATURES OF APPLICATION OF SIMILARITY THEORY IN THE CALCULATION OF NON-STATIONARY ONE-DIMENSIONAL LINEAR THERMAL CONDUCTIVITY OF A ROD. Science and Innovation Center Publishing House, April 2022. http://dx.doi.org/10.12731/2227-930x-2022-12-1-2-43-53.

Der volle Inhalt der Quelle
Annotation:
The article describes the methodological features of the analytical solution of the problem of non-stationary one-dimensional linear thermal conductivity of the rod. The authors propose to obtain a solution to such problems by the method of finite differences using the Fourier similarity criterion. This approach is especially attractive because the similarity theory in the vast majority of cases makes it possible to do without expensive experiments and obtain simple solutions for a wide range of problems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie