Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Linear and non-linear geometries“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Linear and non-linear geometries" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Linear and non-linear geometries"
Cross, M. C. „Non-linear traveling wave states in finite geometries“. Physica D: Nonlinear Phenomena 37, Nr. 1-3 (Juli 1989): 315–18. http://dx.doi.org/10.1016/0167-2789(89)90139-5.
Der volle Inhalt der QuellePralle, Harm, und Johannes Ueberberg. „Linear geometries of Baer subspaces“. Bulletin of the Belgian Mathematical Society - Simon Stevin 6, Nr. 4 (1999): 559–69. http://dx.doi.org/10.36045/bbms/1103055582.
Der volle Inhalt der QuelleDe Winter, S. „Linear representations of semipartial geometries“. Bulletin of the Belgian Mathematical Society - Simon Stevin 12, Nr. 5 (Januar 2006): 767–80. http://dx.doi.org/10.36045/bbms/1136902614.
Der volle Inhalt der QuelleMadore, J., T. Masson und J. Mourad. „Linear connections on matrix geometries“. Classical and Quantum Gravity 12, Nr. 6 (01.06.1995): 1429–40. http://dx.doi.org/10.1088/0264-9381/12/6/009.
Der volle Inhalt der QuelleKnapp, Wolfgang. „Linear closures of finite geometries“. Journal of Geometry 107, Nr. 2 (04.03.2016): 467–81. http://dx.doi.org/10.1007/s00022-016-0322-6.
Der volle Inhalt der QuelleWang, Xiao-Jun. „Non-linear corrections to aberration sensitivity of unstable-cavity geometries“. Optics Express 16, Nr. 26 (09.12.2008): 21223. http://dx.doi.org/10.1364/oe.16.021223.
Der volle Inhalt der QuelleKomatsu, K. „Non-linear sloshing analysis of liquid in tanks with arbitrary geometries“. International Journal of Non-Linear Mechanics 22, Nr. 3 (Januar 1987): 193–207. http://dx.doi.org/10.1016/0020-7462(87)90002-3.
Der volle Inhalt der QuelleTamilmani, Rajesh, und Emmanuel Stefanakis. „Enriched geometric simplification of linear features“. GEOMATICA 71, Nr. 1 (März 2017): 3–19. http://dx.doi.org/10.5623/cig2017-101.
Der volle Inhalt der QuelleRodrigues, Vitor, Maria Costa, Etelvina Gomes, Dmitry Isakov und Michael Belsley. „L-alaninium perrhenate: crystal structure and non-linear optical properties“. Open Chemistry 12, Nr. 10 (01.10.2014): 1016–22. http://dx.doi.org/10.2478/s11532-014-0548-9.
Der volle Inhalt der QuelleUsatenko, Zoryana, Piotr Kuterba, Hassan Chamati und Dirk Romeis. „Linear and ring polymers in confined geometries“. European Physical Journal Special Topics 226, Nr. 4 (April 2017): 651–65. http://dx.doi.org/10.1140/epjst/e2016-60335-0.
Der volle Inhalt der QuelleDissertationen zum Thema "Linear and non-linear geometries"
Zhu, Xiangyang. „Investigation of Non-Linear Rheological Behaviors of Entangled Polymer Melts in Complex Geometries“. University of Akron / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=akron1346733189.
Der volle Inhalt der QuelleFerro, Dennis Eduardo Zavaleta [UNESP]. „Some geometric aspects of non-linear sigma models“. Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/151647.
Der volle Inhalt der QuelleApproved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T19:20:32Z (GMT) No. of bitstreams: 1 ferro_dez_me_ift.pdf: 505892 bytes, checksum: c724040eff49813a08ac27d82fce286b (MD5)
Made available in DSpace on 2017-09-19T19:20:32Z (GMT). No. of bitstreams: 1 ferro_dez_me_ift.pdf: 505892 bytes, checksum: c724040eff49813a08ac27d82fce286b (MD5) Previous issue date: 2016-08-15
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
We review some relevant examples for String Theory of non-linear sigma models. These are bosonic strings propagating in curved background, the Wess-Zumino-Witten model and superstrings in flat and AdS superspace. The mathematical tools required for the study of these models (e.g. topological quantization, Cartan geometry, Lie superalgebras and geometry on coset spaces) are also described. Throughout the dissertation we have focused on classical aspects of these models such as the construction of the action and its symmetries where conditions for holomorphic symmetry of the bosonic string case were found.
Nesta dissertação estudamos alguns exemplos de modelos sigma não lineares em Teoria de cordas. Estes são a corda bosónica se propagando em espaços curvos, o modelo Wess-Zumino-Witten e supercordas em superespaço plano e AdS. As ferramentas matemáticas que se precisam para o estudo destes modelos (e.g. quantização topológica, geometria de Cartan, super-álgebras de Lie e geometria em espaços coset) também são descritas. Ao longo desta dissertação focamos os aspectos clássicos destes modelos tais como a construção da ação e suas simetrias onde condições para serem estas holomorficas no caso da corda bosónica foram achadas.
Ferro, Dennis Eduardo Zavaleta. „Some geometric aspects of non-linear sigma models /“. São Paulo, 2016. http://hdl.handle.net/11449/151647.
Der volle Inhalt der QuelleResumo: We review some relevant examples for String Theory of non-linear sigma models. These are bosonic strings propagating in curved background, the Wess-Zumino-Witten model and superstrings in flat and AdS superspace. The mathematical tools required for the study of these models (e.g. topological quantization, Cartan geometry, Lie superalgebras and geometry on coset spaces) are also described. Throughout the dissertation we have focused on classical aspects of these models such as the construction of the action and its symmetries where conditions for holomorphic symmetry of the bosonic string case were found.
Mestre
Debaecker, Thibaud. „Geometric and bio-inspired analysis of non-linear image sensors“. Paris 6, 2010. http://www.theses.fr/2010PA066717.
Der volle Inhalt der QuelleMarrero, John Javier. „Resolution of linear entity and path geometries expressed via partially-geospatial natural language“. Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61251.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 100-102).
When conveying geospatial information via natural language, people typically combine implicit, commonsense knowledge with explicitly-stated information. Usually, much of this is contextual and relies on establishing locations by relating them to other locations mentioned earlier in the conversation. Because people and objects move through the world, a common and useful kind of geospatial phrase is the path expression, which is formed by designating multiple locations as landmarks on the path and relating those landmarks to one another in sequence. These phrases often include nongeospatial information, and the paths often include linear entities. This thesis builds upon the work done for the GeoCoder spatial reasoning system, by addressing several of its limitations and extending its functionality.
by John Javier Marrero.
M.Eng.
Cocca, Leandro Henrique Zucolotto. „Efeitos fotofísicos em moléculas de Porfirina e Ftalocianina: uma relação entre geometrias e substituintes“. Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-21032018-141027/.
Der volle Inhalt der QuelleIn last years, organic materials have won great interest in areas involving non-linear optical spectroscopy. This is due to the fact that the materials have considerable non-linear optical effects, are easy to synthesize, and have photophysical and photochemical properties that make them capable of being used in a wide range of possible applications. Among the organic materials, it is possible to highlight Porphyrins and Phthalocyanines. The synthesis of these materials enables a large number of distinct classes or groups, which can be distinguished by their peripheral structures and / or metal ions that can be inserted into the macrocycles. It results in changes of its optical properties, that is, replacing the chemical structures of such Porphyrins and Phthalocyanines, it is possible to tune its optical properties, and thus, according to these properties, to discriminate in which applications they can be used. Such materials, in view of their photophysical properties, can be used as photosensitizers in photodynamic therapy, solar cells, optical limiters or photobactericides among others. Thus, in this Master\'s Dissertation, a linear and nonlinear spectroscopic characterization of these materials is carried out in order to determine specific optical properties that can be employed in the cited applications. For this spectroscopic characterization, linear and nonlinear spectroscopy techniques were employed, among them the Z-Scan technique was employed in three distinct configurations (Z-Scan by Single Pulse, by Pulse Train and by Supercontinuum White Light) for determination of absorptions of excited states. Fluorescence lifetimes, radiative decay and internal conversion times, single and triple triplet (fundamental and excited) and quantum efficiencies (fluorescence, internal conversion, and triplet formation) were the parameters determined, and with these parameters, it was possible to understand how changes in the chemical structures (peripheral and metallic ions) modify considerable the optical properties of Porphyrins and Phthalocyanines.
RODRIGUES, LARA. „INFLUENCE OF INITIAL GEOMETRIC IMPERFECTIONS ON THE INTERNAL RESONANCES AND NON-LINEAR VIBRATIONS OF THIN-WALLED CYLINDRICAL SHELLS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=35757@1.
Der volle Inhalt der QuelleCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
A análise das ressonâncias internas em sistemas estruturais contínuos é uma das principais áreas de pesquisa no campo da dinâmica não linear. A ressonância interna entre dois modos de vibração ocorre quando a proporção de suas frequências naturais é um número inteiro. De particular importância, devido à sua influência na resposta estrutural, é a ressonância interna 1:1, geralmente associada às simetrias do sistema, a ressonância interna 1:2, devida às não linearidades quadráticas e a ressonância 1:3 decorrente de não linearidades cúbicas. A ressonância interna permite a transferência de energia entre os modos de vibração relacionados, levando geralmente a novos fenômenos com profunda influência sobre a estabilidade da resposta dinâmica. As cascas de revolução geralmente exibem ressonâncias internas devido à inerente simetria circunferencial e um denso espectro de frequência em sua faixa de frequências mais baixas. Isso pode levar não apenas a ressonâncias internas do tipo m:n, mas a múltiplas ressonâncias internas. Nesta tese é realizada a análise de múltiplas ressonâncias internas em cascas cilíndricas delgadas, em particular as ressonâncias internas de 1:1:1:1 e 1:1:2:2 são investigadas em detalhes, um tópico pouco explorado na literatura técnica. A investigação de ressonâncias internas em sistemas contínuos geralmente é realizada usando modelos discretos de baixa dimensão. Embora alguns trabalhos anteriores tenham investigado ressonâncias internas do tipo m:n em cascas cilíndricas, muitos resultados não são consistentes, uma vez que os modelos discretos derivados não consideram os acoplamentos modais devido a não linearidades quadráticas e cúbicas. Aqui, usando um procedimento de perturbação, expansões modais consistentes são derivadas para um número arbitrário de modos de interação, levando a modelos de baixa dimensão confiáveis. A precisão desses modelos é corroborada usando o método Karhunen-Loève. Finalmente, é bem sabido que pequenas imperfeições geométricas da ordem da espessura da casca têm uma forte influência na sua resposta não linear. No entanto, sua influência nas ressonâncias internas, instabilidade dinâmica e transferência de energia é desconhecida. Assim, a influência de diferentes tipos de imperfeição modal é devidamente considerada na presente análise. Utilizando os modelos discretos aqui derivados, é apresentada uma análise detalhada das bifurcações, utilizando técnicas de continuação e o critério de estabilidade de Floquet, esclarecendo a importância das ressonâncias internas nas vibrações não lineares e instabilidades de cascas cilíndricas. Os resultados também confirmam que a forma e a magnitude das imperfeições geométricas iniciais têm uma influência profunda nos resultados, permitindo ou impedindo a transferência de energia entre os modos ressonantes considerados.
The analysis of internal resonances in continuous structural systems is one of the main research areas in the field of nonlinear dynamics. Internal resonance between two vibration modes occur when the ratio of their natural frequencies in an integer number. Of particular importance, due to its influence on the structural response, is the 1:1 internal resonance, usually associated with system symmetries, the 1:2 internal resonance, due to quadratic nonlinearities, and the 1:3 resonance arising from cubic nonlinearities. The internal resonance enables the energy transfer between the related vibration modes, leading usually to new phenomena with profound influence on the stability of the dynamic response. Shells of revolution usually exhibit internal resonances due to the inherent circumferential symmetry and a dense frequency spectrum in their lower frequency range. This may lead not only to m:n internal resonances, but also multiple internal resonances. In this thesis, the analysis of multiple internal resonances in slender cylindrical shells is conducted, in particular 1:1:1:1 and 1:1:2:2 internal resonances are investigated in detail, a topic rarely found in the technical literature. The investigation of internal resonances in continuous systems is usually conducted using low dimensional discrete models. Although some previous works have investigated m:n internal resonances in cylindrical shells, many results are not consistent since the derived discrete models do not consider the modal couplings due to quadratic and cubic nonlinearities. Here, using a perturbation procedure, consistent modal expansions are derived for an arbitrary number of interacting modes, leading to reliable low dimensional models. The accuracy of these models is corroborated using the Karhunen-Loève method. Finally, it is well known that small geometric imperfections of the order of the shell thickness has a strong influence on the shell nonlinear response. However, their influence on internal resonances, dynamic instability and energy transfer is largely unknown. Thus, the influence of different types of modal imperfection is properly considered in the present analysis. Using the derived discrete models, a detail bifurcation analysis, using continuation techniques and Floquet stability criterion, is presented, clarifying the importance of internal resonances on the nonlinear vibrations and instabilities of cylindrical shells. The results also confirm that the form and magnitude of initial geometric imperfections has a profound influence on the results enabling or preventing the energy transfer among the considered resonant modes.
De, Saedeleer Julie. „The residually weakly primitive and locally two-transitive rank two geometries for the groups PSL(2, q)“. Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210037.
Der volle Inhalt der Quelleof rank two on which some group PSL(2,q), q a prime power, acts flag-transitively.
Actually we require that the action be RWPRI (residually weakly primitive) and (2T)1
(doubly transitive on every residue of rank one). In fact our definition of RWPRI requires
the geometry to be firm (each residue of rank one has at least two elements) and RC
(residually connected).
The main goal is achieved in this thesis.
It is stated in our "Main Theorem". The proof of this theorem requires more than 60pages.
Quite surprisingly, our proof in the direction of the main goal uses essentially the classification
of all subgroups of PSL(2,q), a famous result provided in Dickson’s book "Linear groups: With an exposition of the Galois field theory", section 260, in which the group is called Linear Fractional Group LF(n, pn).
Our proof requires to work with all ordered pairs of subgroups up to conjugacy.
The restrictions such as RWPRI and (2T)1 allow for a complete analysis.
The geometries obtained in our "Main Theorem" are bipartite graphs; and also locally 2-arc-transitive
graphs in the sense of Giudici, Li and Cheryl Praeger. These graphs are interesting in their own right because of
the numerous connections they have with other fields of mathematics.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Carr, Andrew Newberry. „Geometric Extensions of Neural Processes“. BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8394.
Der volle Inhalt der QuelleLindqvist, Björn. „Combined Control and Path Planning for a Micro Aerial Vehicle based on Non-linear MPC with Parametric Geometric Constraints“. Thesis, Luleå tekniska universitet, Rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76212.
Der volle Inhalt der QuelleBücher zum Thema "Linear and non-linear geometries"
Linear spaces with few lines. Berlin: New York, 1991.
Den vollen Inhalt der Quelle findenGaven, Martin, Hrsg. Geometric function theory and non-linear analysis. Oxford: Clarendon, 2001.
Den vollen Inhalt der Quelle findenSmith, Ralph C. A Galerkin method for linear PDE systems in circular geometries with structural acoustic applications. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1994.
Den vollen Inhalt der Quelle findenInstitute for Computer Applications in Science and Engineering., Hrsg. A Galerkin method for linear PDE systems in circular geometries with structural acoustic applications. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1994.
Den vollen Inhalt der Quelle findenArtin, Emil. Algèbre géométrique. Paris: Editions Jacques Gabay, 1996.
Den vollen Inhalt der Quelle findenBanchoff, Thomas. Linear algebra through geometry. 2. Aufl. New York: Springer-Verlag, 1992.
Den vollen Inhalt der Quelle findenWoodford, Chris. Solving linear and non-linear equations. New York: Ellis Horwood, 1992.
Den vollen Inhalt der Quelle findenWoodford, Chris. Solving linear and non-linear equations. Chichester: Ellis Horwood, 1992.
Den vollen Inhalt der Quelle findenservice), SpringerLink (Online, Hrsg. Non-Linear Mechanics. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Den vollen Inhalt der Quelle findenKnauss, W. G., und A. J. Rosakis, Hrsg. Non-Linear Fracture. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-017-2444-9.
Der volle Inhalt der QuelleBuchteile zum Thema "Linear and non-linear geometries"
Buekenhout, Francis, und Arjeh M. Cohen. „Linear Geometries“. In Diagram Geometry, 201–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34453-4_5.
Der volle Inhalt der QuelleGuelachvili, G., und N. Picqué. „Table 5. H2 16O (H16OH): Equilibrium geometries, rotational constants, and harmonic frequencies“. In Non-linear Triatomic Molecules, 78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-47383-1_7.
Der volle Inhalt der QuelleGuelachvili, G., und N. Picqué. „Table 4. H2 16O (H16OH): Calculated equilibrium geometries, rotational constants, and harmonic frequencies“. In Non-linear Triatomic Molecules, 76–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-47383-1_6.
Der volle Inhalt der QuelleGuelachvili, G., und N. Picqué. „Table 38. H2 16O (H16OH): Equilibrium geometries, harmonic and fundamental frequencies using various potentials“. In Non-linear Triatomic Molecules, 129. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-47383-1_40.
Der volle Inhalt der QuelleDeLuzio, Anthony James. „Geometric Non-linear Analysis“. In Geometric Nonlinearity in Structural Behavior, 19–80. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-40508-2_4.
Der volle Inhalt der QuelleGanter, Bernhard, und Thomas Ihringer. „Varieties with linear subalgebra geometries“. In Lecture Notes in Mathematics, 94–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0098457.
Der volle Inhalt der QuelleSurowski, David B. „Symmetrical Maps Arising from Regular Coxeter Elements of Linear Groups“. In Geometries and Groups, 535–42. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-4017-8_21.
Der volle Inhalt der QuelleBakas, I. „Conformal Algebras and Non-Linear Differential Equations“. In Differential Geometric Methods in Theoretical Physics, 203–11. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-9148-7_21.
Der volle Inhalt der QuelleMétivier, Guy, Jean-Luc Joly und Jeffrey Rauch. „Recent Results in Non Linear Geometric Optics“. In Hyperbolic Problems: Theory, Numerics, Applications, 723–36. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8724-3_23.
Der volle Inhalt der QuelleBarbosa, J. T., A. M. Ferreira, J. César Sá und A. T. Marques. „Geometric Non-Linear Analysis of Sandwich Structures“. In Mechanics of Sandwich Structures, 191–98. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9091-4_22.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Linear and non-linear geometries"
Steinbauer, R. „A geometric approach to full Colombeau algebras“. In Linear and Non-Linear Theory of Generalized Functions and its Applications. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2010. http://dx.doi.org/10.4064/bc88-0-21.
Der volle Inhalt der QuelleLeow, A., Ming-Chang Chiang, H. Protas, P. Thompson, L. Vese und H. S. C. Huang. „Linear and non-linear geometric object matching with implicit representation“. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE, 2004. http://dx.doi.org/10.1109/icpr.2004.1334627.
Der volle Inhalt der QuelleDEMIR-KAVUK, OZGUR, FLORIAN KRULL, MYONG-HO CHAE und ERNST-WALTER KNAPP. „PREDICTING PROTEIN COMPLEX GEOMETRIES WITH LINEAR SCORING FUNCTIONS“. In Proceedings of the 10th Annual International Workshop on Bioinformatics and Systems Biology (IBSB 2010). IMPERIAL COLLEGE PRESS, 2010. http://dx.doi.org/10.1142/9781848166585_0002.
Der volle Inhalt der QuelleGuarnera, Daniele, Erasmo Carrera, Ibrahim Kaleel, Alfonso Pagani und Marco Petrolo. „Non-Linear Analysis of Bio-Structures Through Refined Beam Models“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86848.
Der volle Inhalt der QuelleSzeri, Andras Z. „Non-Linear Lubricant Behavior in Concentrated Contacts“. In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/fed-24919.
Der volle Inhalt der QuelleBerberich, Eric, Michael Hemmer und Michael Kerber. „A generic algebraic kernel for non-linear geometric applications“. In the 27th annual ACM symposium. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1998196.1998224.
Der volle Inhalt der QuelleBoston, Jonathan, Eric Swenson, Donald Kunz, Wenbin Yu und Maxwell Blair. „Experiments with Geometric Non-Linear Coupling for Analytical Validation“. In 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
18th AIAA/ASME/AHS Adaptive Structures Conference
12th. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-3018.
Weber, Tobias W., Eike Lyczkowski und Wolfgang Kiess. „Non-geometric correlated channel fading model with linear complexity“. In 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). IEEE, 2023. http://dx.doi.org/10.1109/eucnc/6gsummit58263.2023.10188367.
Der volle Inhalt der QuellePatel, Sohel J., Steven L. Grant, Maciej Zawodniok und Jacob Benesty. „On the Design of Optimal Linear Microphone Array Geometries“. In 2018 16th International Workshop on Acoustic Signal Enhancement (IWAENC). IEEE, 2018. http://dx.doi.org/10.1109/iwaenc.2018.8521335.
Der volle Inhalt der QuelleKepple, Alan, Marwan Charrouf, David Rackiewicz und Phillip Rush. „Non-Linear Analysis of Steam Generator U-Tube In-Plane Vibration“. In ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-98163.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Linear and non-linear geometries"
Ramaswamy, R. V. Linear (Passive) and Non-Linear Guided and Studies in Glass. Fort Belvoir, VA: Defense Technical Information Center, Juli 1989. http://dx.doi.org/10.21236/ada211693.
Der volle Inhalt der QuelleCronin-Golomb, Mark, und Jed Khoury. Non-Linear Optical Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada407564.
Der volle Inhalt der QuelleLenzner, Matthias, Wolfgang Rudolph und Luke Emmert. Time-resolved non-linear nanoscopy. Office of Scientific and Technical Information (OSTI), Dezember 2017. http://dx.doi.org/10.2172/1410980.
Der volle Inhalt der QuelleVledder, Gerbrant van. Non-Linear Four-Wave Interactions. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada582094.
Der volle Inhalt der QuelleTukey, John W. Thinking about Non-Linear Smoothers. Fort Belvoir, VA: Defense Technical Information Center, Mai 1986. http://dx.doi.org/10.21236/ada172738.
Der volle Inhalt der QuelleMarchese, Malvina. Advanced Non-Linear Regression Modelling. Instats Inc., 2023. http://dx.doi.org/10.61700/mrtlpflhp64q7469.
Der volle Inhalt der QuelleMarchese, Malvina. Advanced Non-Linear Regression Modelling. Instats Inc., 2023. http://dx.doi.org/10.61700/ovehw89kw8hwq469.
Der volle Inhalt der QuelleLe Bas, Pierre-Yves. Non-Linear Acoustics for Non-Destructive testing. Office of Scientific and Technical Information (OSTI), Oktober 2019. http://dx.doi.org/10.2172/1569728.
Der volle Inhalt der QuelleEbeida, Mohamed, Ahmed Abdelkader, Nina Amenta, Drew Kouri, Ojas Parekh, Cynthia Phillips und Nickolas Winovich. Novel Geometric Operations for Linear Programming. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1813669.
Der volle Inhalt der QuelleWu, J. C. Studies in Non-Linear Unsteady Aerodynamics. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1986. http://dx.doi.org/10.21236/ada177006.
Der volle Inhalt der Quelle