Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Limbic circuit“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Limbic circuit" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Limbic circuit"
Mehlman, Max L., Shawn S. Winter, Stephane Valerio und Jeffrey S. Taube. „Functional and anatomical relationships between the medial precentral cortex, dorsal striatum, and head direction cell circuitry. I. Recording studies“. Journal of Neurophysiology 121, Nr. 2 (01.02.2019): 350–70. http://dx.doi.org/10.1152/jn.00143.2018.
Der volle Inhalt der QuelleJoel, Daphna. „The limbic basal-ganglia-thalamocortical circuit and goal-directed behavior“. Behavioral and Brain Sciences 22, Nr. 3 (Juni 1999): 525–26. http://dx.doi.org/10.1017/s0140525x99292047.
Der volle Inhalt der QuelleKaushal, Parth Sarthi, Brijesh Saran, Abhay Bazaz und Harshit Tiwari. „A brief review of limbic system anatomy, function, and its clinical implication“. Santosh University Journal of Health Sciences 10, Nr. 1 (Januar 2024): 26–32. http://dx.doi.org/10.4103/sujhs.sujhs_19_24.
Der volle Inhalt der QuelleMehlman, Max L., Shawn S. Winter und Jeffrey S. Taube. „Functional and anatomical relationships between the medial precentral cortex, dorsal striatum, and head direction cell circuitry. II. Neuroanatomical studies“. Journal of Neurophysiology 121, Nr. 2 (01.02.2019): 371–95. http://dx.doi.org/10.1152/jn.00144.2018.
Der volle Inhalt der QuelleFrenois, F. „A Specific Limbic Circuit Underlies Opiate Withdrawal Memories“. Journal of Neuroscience 25, Nr. 6 (09.02.2005): 1366–74. http://dx.doi.org/10.1523/jneurosci.3090-04.2005.
Der volle Inhalt der QuelleKalin, Ned H. „Prefrontal Cortical and Limbic Circuit Alterations in Psychopathology“. American Journal of Psychiatry 176, Nr. 12 (01.12.2019): 971–73. http://dx.doi.org/10.1176/appi.ajp.2019.19101036.
Der volle Inhalt der QuelleGabriel, Michael, und David M. Smith. „What does the limbic memory circuit actually do?“ Behavioral and Brain Sciences 22, Nr. 3 (Juni 1999): 451. http://dx.doi.org/10.1017/s0140525x99282039.
Der volle Inhalt der QuellePleil, K. E., J. F. DiBerto, A. M. Kendra, A. Shirke, S. Chien und T. L. Kash. „A thalamo-limbic neuropeptide circuit driving binge drinking behavior“. Alcohol 60 (Mai 2017): 223. http://dx.doi.org/10.1016/j.alcohol.2017.02.269.
Der volle Inhalt der QuellePanzer, Annie, und Margaretha Viljoen. „The mother as hidden regulator“. Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 22, Nr. 4 (26.09.2003): 103–5. http://dx.doi.org/10.4102/satnt.v22i4.218.
Der volle Inhalt der QuelleKeser, Zafer, Arash Kamali, Kyan Younes, Paul E. Schulz, Flavia M. Nelson und Khader M. Hasan. „Yakovlev's Basolateral Limbic Circuit in Multiple Sclerosis Related Cognitive Impairment“. Journal of Neuroimaging 28, Nr. 6 (12.06.2018): 596–600. http://dx.doi.org/10.1111/jon.12531.
Der volle Inhalt der QuelleDissertationen zum Thema "Limbic circuit"
Comte, Magali. „Neuro-imagerie fonctionnelle du circuit cortico-limbique lors du traitement émotionnel chez le patient schizophrène et le volontaire sain“. Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM5071/document.
Der volle Inhalt der QuelleWithin the cortico-limbic circuit, complementary regions are believed to be involved in either the appraisal or the regulation of affective state. However, the respective contribution of these bottom-up and top-down mechanisms during emotion processing remains to be clarified. First, we validated a new fMRI paradigm designed to dissociate the components of the cortico-limbic circuit, that is, the dorsal cognitive circuit intertwined with the ventral affective circuit. We found that the amygdala and its connections to the dorsal circuit was engaged by bottom-up emotional processing. The dorsal anterior cingulate cortex (ACC) and its connections to the dorsolateral prefrontal cortex (DLPFC) and amygdala, was recruited by top-down resolution of emotional conflict. The DLPFC and its connections to dorsal ACC was engaged by top-down attentional control. Secondly, we investigated the impact of anxiety on the circuit. We demonstrated that higher levels of anxiety were associated with stronger conflict-related activation in ACC but with reduced connectivity between ACC and LPFC. Finally, we examined the variation in functional activity and connectivity in schizophrenia patients. In patients compared to controls, bottom-up processes were associated with reduced functional interaction between the amygdala and both dorsal and ventral ACC as well as DLPFC. Top-down resolution of emotional conflict led to stronger functional connectivity between the dorsal ACC and both ventral parts of ACC and DLPFC. Increased top-down attentional control caused higher functional coupling between the DLPFC and ventral ACC
Carey, Guillaume. „Imaging anxiety in Parkinson's disease“. Electronic Thesis or Diss., Université de Lille (2022-....), 2024. https://pepite-depot.univ-lille.fr/ToutIDP/EDBSL/2024/2024ULILS023.pdf.
Der volle Inhalt der QuelleAnxiety in Parkinson's disease (PD) is a frequent and disabilitating non-motor symptom. It is difficult to manage, partly due to a poor knowledge of the underlying mechanisms. The objective of this thesis was to identify the underlying mechanisms of PD-related anxiety, using multimodal brain MRI.A systematic review of the literature on imaging data in PD-related anxiety was first carried out, allowing the generation of initial hypotheses. Then, several studies including structural and functional brain MRI analyses were carried out in PD patients with or without clinically significant anxiety. Our analyses focused on the fear circuit, known to be involved in anxiety disorders and fear processing, and the limbic cortico-striato-thalamo-cortical circuit, known for its involvement in the neuropsychiatric symptoms of PD.Our results suggest that PD-related anxiety is the consequence of a functional and structural imbalance between these two circuits. Certain overlapping structures, such as the thalamus, the striatum or the brainstem nuclei, could be key areas whose alteration could explain the high prevalence of these disorders in PD. Further works based in particular on technological advances in imaging and new concepts concerning the pathophysiology of PD will be necessary to answer the remaining questions
Parkinson, John Anthony. „Limbic cortico-striatal circuitry underlying Pavlovian associative learning“. Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625012.
Der volle Inhalt der QuelleBuscher, Nathalie. „Cognition and the balance of excitation and inhibition in mouse cortico-limbic circuits“. Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690894.
Der volle Inhalt der QuelleZhu, Ning. „Advances in Non-Foster Circuit Augmented, Broad Bandwidth, Metamaterial-Inspired, Electrically Small Antennas“. International Foundation for Telemetering, 2012. http://hdl.handle.net/10150/581683.
Der volle Inhalt der QuelleThere are always some intrinsic tradeoffs among the performance characteristics: radiation efficiency, directivity, and bandwidth, of electrically small antennas (ESAs). A non-Foster enhanced, broad bandwidth, metamaterial-inspired, electrically small, Egyptian axe dipole (EAD) antenna has been successfully designed and measured to overcome two of these restrictions. By incorporating a non-Foster circuit internally in the near-field resonant parasitic (NFRP) element, the bandwidth of the resulting electrically small antenna was enhanced significantly. The measured results show that the 10 dB bandwidth (BW10dB) of the non-Foster circuit-augmented EAD antenna is more than 6 times the original BW10dB value of the corresponding passive EAD antenna.
Borkowski, M. (Maciej). „Digital Δ-Σ Modulation:variable modulus and tonal behaviour in a fixed-point digital environment“. Doctoral thesis, University of Oulu, 2008. http://urn.fi/urn:isbn:9789514289101.
Der volle Inhalt der QuelleBerg, Junker Maria Constance. „Neural correlates of romantic love and romantic attachment“. Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-16055.
Der volle Inhalt der QuelleJebari, Salha. „The inelastic Cooper pair tunneling amplifier (ICTA)“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY036/document.
Der volle Inhalt der QuelleJosephson parametric amplifiers (JPA), have proven to be an indispensable tool for awide range of experiments on quantum devices in the microwave frequency regime, becausethey provide the lowest possible noise. However, JPAs remain much more difficult to use andoptimize than conventional microwave amplifiers. Recent experiments with superconductingcircuits consisting of a DC voltage-biased Josephson junction in series with a resonator,showed that a tunneling Cooper pair can emit one or several photons with a total energyof 2e times the applied voltage. In this thesis we show that such q circuit can be used toimplement a new type of phase preserving microwave amplifier, which we call InelasticCooper pair Tunneling Amplifier (ICTA). It is powered by a simple DC bias and offers nearquantum-limited noise performance.We start this work by presenting a brief and simple picture of the basic ICTA operatingprinciples. In analogy with the quantum theory of JPAs, we calculate the performances ofthis amplifier such as the gain, bandwidth and noise. Then, we present the first experimentalproof that amplification close to the quantum limit is possible without microwave drive inan extremely simple setup. These measurements are made on a first generation of samplesbased on aluminium junctions. According to our theoretical and experimental results, wehave designed microwave circuits presenting specific frequency-dependent impedances tothe junction in order to optimize the performances of our amplifier. This second generationof ICTA samples is fabricated from niobium nitride and provide significantly lower noiseand higher gain.We expect that once fully optimized, such an amplifier, powered by simple DC voltagescould then make measuring microwave signals at the single photon level much easier andallow to deploy many amplifiers on a chip. It could therefore be an important ingredient forqubit readout in large-scale quantum processors
Nevřivý, Tomáš. „Kompaktní měnič pro BLDC motor“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-219927.
Der volle Inhalt der QuelleCarvalho, Ana Raquel Franky Gomes. „Modulation of limbic noradrenergic circuits by cannabinoids“. Doctoral thesis, 2010. http://hdl.handle.net/1822/11751.
Der volle Inhalt der QuelleThe endocannabinoid system has been implicated in the regulation of several physiological functions. The widespread distribution of the endocannabinoid system in the central nervous system (CNS) accounts for many effects attributed to cannabinoids. Importantly, cannabinoids have been shown to modulate mood, cognition and memory. There is growing evidence suggesting that cannabinoids can interact with the noradrenergic system. Noradrenergic transmission in the CNS has also been implicated in the regulation of mood, cognition and memory. In the present work, the hypothesis that cannabinoids can impact noradrenergic transmission in the limbic system was examined. Firstly, localization of the cannabinoid receptor type 1 (CB1r) was performed in the nucleus accumbens (Acb) and in the nucleus of the solitary tract (NTS), using immunohistochemical techniques, to clarify the anatomical substrates underlying potential interactions. It was shown that CB1r is present in noradrenergic neurons of the NTS. In addition, CB1r was found in the Acb but rarely in noradrenergic terminals. Furthermore, the effects of cannabinoid administration on adrenergic receptor (AR) expression in the Acb were studied. Western blot analysis of accumbal tissue revealed that exogenous administration of the synthetic cannabinoid WIN 55,212-2 decreases α2A- and β1-AR expression. Finally, the importance of norepinephrine (NE) in cannabinoid-induced behaviors was tested. Using the place conditioning paradigm and the elevated zero maze (EZM), the effects of cannabinoids on aversion and anxiety, respectively, were tested following depletion or blockade of noradrenergic transmission in the Acb or in the bed nucleus of the stria terminalis (BNST). Using an immunotoxin approach, NE depletion restricted to the Acb, but not BNST, blocked the expression of aversion to WIN 55,212-2. Depletion of NE had no effect on WIN 55,212-2-induced anxiety. Moreover, the fact that blockade of β1-AR in the Acb prevents WIN 55,212-2-induced aversion suggests that noradrenergic transmission via β1-AR is critical for eliciting this behavior. In conclusion, the present work provides new evidence supporting the idea that cannabinoids can impact noradrenergic transmission in the limbic system. In addition, cannabinoid-induced aversion is dependent on intact noradrenergic transmission in the Acb. Taken together, the studies provide herein clarify the anatomical and neurochemical substrates for cannabinoid actions in the CNS.
O sistema endocanabinóide tem sido implicado na regulação de várias funções fisiológicas. A dispersa distribuição do sistema endocanabinóide no sistema nervoso central (SNC) explica os muitos efeitos atribuídos aos canabinóides. De realçar que tem sido demonstrado que os canabinóides modelam o humor, cognição e memória. Existe uma crescente evidência sugerindo uma interacção entre o sistema endocanabinóide e o sistema noradrenérgico. Por seu lado, transmissão noradrenérgica no SNC tem sido implicada na regulação do humor, cognição e memória. No presente trabalho, a hipótese de que os canabinóides podem afectar a transmissão noradrenérgica no sistema límbico foi examinada. Inicialmente, a localização do receptor dos canabinóides tipo 1 (CB1r) no núcleo accumbens (Acb) e no núcleo do tracto solitário (NTS) foi efectuada utilizando técnicas de imunohistoquímica, de forma a clarificar os substratos anatómicos subjacente a potenciais interacções. Foi demonstrado que CB1r está presente em neurónios noradrenérgicos do NTS. Para além disso, CB1r foi encontrado no Acb mas raramente em terminais noradrenérgicos. Adicionalmente, os efeitos da administração de canabinóides na expressão de receptores adrenérgicos no Acb foram estudados. Análise por western blot de tecido do Acb revelou que administração exógenea do canabinóide sintético WIN 55,212-2 diminui a expressão dos receptores adrenérgicos α2A e β1. Finalmente, a importância da noradrenalina (NA) nos comportamentos induzidos pelos canabinóides foi testada. Utilizando o paradigma de “place conditioning” e o teste “elevated zero maze” (EZM), os efeitos dos canabinóides na aversão e anxiedade foram testados após depleção ou bloqueio da transmissão noradrenérgica no Acb ou no núcleo da estria terminalis (BNST). Utilizando uma imunotoxina, a depleção restrita de NA no Acb, mas não no BNST, bloqueou a aversão ao WIN 55,212-2. Enquanto que depleção de NA não teve nenhum efeito na anxiedade provocada por WIN 55,212- 2. Mais, o facto de o bloqueio do receptor adrenérgico β1 no Acb prevenir a aversão induzida por WIN 55,212-2 sugere que a transmissão noradrenérgica via este receptor é fundamental para a expressão deste comportamento. Em conclusão, o presente trabalho fornece nova evidência suportando a ideia de que os canabinóides podem afectar a transmissão noradrenérgica no sistema límbico. Mais, a aversão induzida por canabinóides é dependente da transmissão noradrenérgica no Acb. Em conjunto, os estudos apresentados neste trabalho esclarecem os substratos anatómicos e neuroquímicos das acções dos canabinóides no SNC.
Bücher zum Thema "Limbic circuit"
1952-, Kalivas Peter W., und Barnes Charles D. 1935-, Hrsg. Limbic motor circuits and neuropsychiatry. Boca Raton: CRC Press, 1993.
Den vollen Inhalt der Quelle findenRobert, Philippe, Elsa Leone, Hélène Amieva und David Renaud. Managing behavioural and psychological symptoms in Alzheimer’s disease. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198779803.003.0009.
Der volle Inhalt der QuelleKalivas, Peter W., und Charles D. Barnes. Limbic Motor Circuits and Neuropsychiatry. Herausgegeben von Peter W. Kalivas und Charles D. Barnes. CRC Press, 2019. http://dx.doi.org/10.1201/9780429274411.
Der volle Inhalt der QuelleKalivas, Peter W., und Charles D. Barnes. Limbic Motor Circuits and Neuropsychiatry. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenKalivas, Peter W., und Charles D. Barnes. Limbic Motor Circuits and Neuropsychiatry. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenKalivas, Peter W., und Charles D. Barnes. Limbic Motor Circuits and Neuropsychiatry. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenKalivas, Peter W., und Charles D. Barnes. Limbic Motor Circuits and Neuropsychiatry. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenKalivas, Peter W., und Charles D. Barnes. Limbic Motor Circuits and Neuropsychiatry. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenFisch, Adam. Limbic and Olfactory Systems. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199845712.003.0276.
Der volle Inhalt der QuelleMacNamara, Annmarie, und K. Luan Phan. Prefrontal-Limbic Brain Circuitry and the Regulation of Emotion. Herausgegeben von Israel Liberzon und Kerry J. Ressler. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190215422.003.0009.
Der volle Inhalt der QuelleBuchteile zum Thema "Limbic circuit"
Leo, Jonathan. „Limbic Circuit and Lesions“. In Medical Neuroanatomy for the Boards and the Clinic, 91–98. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88835-0_11.
Der volle Inhalt der QuelleRuiyong, Wu. „Papez Circuit and Limbic System“. In The ECPH Encyclopedia of Psychology, 1–2. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6000-2_42-1.
Der volle Inhalt der QuelleLeo, Jonathan. „The Limbic Circuit, Learning, Memory, and How the Brain Works“. In Medical Neuroanatomy for the Boards and the Clinic, 131–38. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-41123-6_11.
Der volle Inhalt der QuelleBraak, Heiko, und Eva Braak. „Alzheimer Neuropathology and Limbic Circuits“. In Neurobiology of Cingulate Cortex and Limbic Thalamus, 606–26. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4899-6704-6_22.
Der volle Inhalt der QuelleGroenewegen, Henk J., Pieter Voorn und Jørgen Scheel-Krüger. „Limbic-Basal Ganglia Circuits Parallel and Integrative Aspects“. In Innovations in Cognitive Neuroscience, 11–45. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42743-0_2.
Der volle Inhalt der QuelleCanteras, Newton S., Dayu Lin und Joshua G. Corbin. „Development of Limbic System Stress-Threat Circuitry“. In Masterclass in Neuroendocrinology, 317–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40002-6_12.
Der volle Inhalt der QuelleAluf, Ofer. „Optoisolation Circuits with Limit Cycles“. In Advance Elements of Optoisolation Circuits, 1–92. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55316-0_1.
Der volle Inhalt der QuelleBlatt, Gene J., Adrian L. Oblak und Jeremy D. Schmahmann. „Cerebellar Connections with Limbic Circuits: Anatomy and Functional Implications“. In Handbook of the Cerebellum and Cerebellar Disorders, 479–96. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-1333-8_22.
Der volle Inhalt der QuelleMicevych, Paul, und Kevin Sinchak. „The Neurochemistry of Limbic-Hypothalamic Circuits Regulating Sexual Receptivity“. In Handbook of Neurochemistry and Molecular Neurobiology, 151–93. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-30405-2_4.
Der volle Inhalt der QuelleSchmahmann, Jeremy D., Adrian L. Oblak und Gene J. Blatt. „Cerebellar Connections with Limbic Circuits: Anatomy and Functional Implications“. In Handbook of the Cerebellum and Cerebellar Disorders, 1–21. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-97911-3_22-2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Limbic circuit"
Fyrillas, Andreas, Olivier Faure, Nicolas Maring, Jean Senellart und Nadia Belabas. „High-Fidelity Quantum Information Processing with Machine Learning-Characterized Photonic Circuits“. In Quantum 2.0, QW4A.1. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qw4a.1.
Der volle Inhalt der QuelleZhang, Junyin, Zihan Li, Johann Riemensberger, Grigory Lihachev, Guanhao Huang und Tobias J. Kippenberg. „Observation of fundamental charge noise in electro-optic photonic integrated circuits“. In CLEO: Science and Innovations, STh3F.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sth3f.2.
Der volle Inhalt der QuelleGómez-Carreño, Carlos Rodríguez, Antonio Ramírez García, Luis Beato Fernández, Irene Díaz Quero und Estefanía Segura Escobar. „Craving and Priming of alcohol in depressive disorders. Bibliographic review and new therapies.“ In 22° Congreso de la Sociedad Española de Patología Dual (SEPD) 2020. SEPD, 2020. http://dx.doi.org/10.17579/sepd2020p140.
Der volle Inhalt der QuelleCăruntu-Caraman, Livia. „Utilizarea englezismelor în limba română în contexte adecvate“. In Conferinta stiintifica nationala cu participare internationala „Lecturi in memoriam acad. Silviu Berejan”. “Bogdan Petriceicu-Hasdeu” Institute of Romanian Philology, Republic of Moldova, 2021. http://dx.doi.org/10.52505/lecturi.2021.05.05.
Der volle Inhalt der QuelleTajima, Yuki, Hiroshi Hosaka und Yoshinori Oonishi. „Study on Motor-Driven Gyroscopic Generator: Part 2 — Self-Acceleration by Power Feedback“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86444.
Der volle Inhalt der QuelleChen, Yung-Tin, und Steve Radigan. „Pushing KrF photolithography limit for 3D integrated circuit“. In Microlithography 2004, herausgegeben von Bruce W. Smith. SPIE, 2004. http://dx.doi.org/10.1117/12.544386.
Der volle Inhalt der QuelleGregory, George, und Kevin J. Lippert. „Applying LV Circuit Breakers to Limit Arc Energy“. In Conference Record of 2007 Annual Pulp and Paper Industry Technical Conference. IEEE, 2007. http://dx.doi.org/10.1109/papcon.2007.4286293.
Der volle Inhalt der QuelleZhao, Yilun, Yu Chen, He Li, Ying Wang, Kaiyan Chang, Bingmeng Wang, Bing Li und Yinhe Han. „Full State Quantum Circuit Simulation Beyond Memory Limit“. In 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE, 2023. http://dx.doi.org/10.1109/iccad57390.2023.10323666.
Der volle Inhalt der QuelleTiwari, Ankit, Trevor Davey und Matthew Willis. „CFD Analysis of Transient Heat Conduction in the Electronic Control Circuitry of Steering Wheel Column Adjustment System“. In ASME 2021 Heat Transfer Summer Conference collocated with the ASME 2021 15th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ht2021-63973.
Der volle Inhalt der QuelleWang, Ning, Ying Zhang, Enguang Qi und Yue Cheng. „An LDO Current Limit Protection Circuit With Hiccup Mode“. In 2023 8th International Conference on Integrated Circuits and Microsystems (ICICM). IEEE, 2023. http://dx.doi.org/10.1109/icicm59499.2023.10365917.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Limbic circuit"
Haight, Richard A., Brian E. McCandless, Andrew C. Kummel und Roy G. Gordon. Driving CZTS to the SQ Limit: Solving the Open Circuit Voltage Problem. Office of Scientific and Technical Information (OSTI), Dezember 2016. http://dx.doi.org/10.2172/1335851.
Der volle Inhalt der Quelle