Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lightweight protokol“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lightweight protokol" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lightweight protokol"
Prasetyo, Inung Bagus, Mahar Faiqurahman und Zamah Sari. „Rancang Bangun Control dan Monitoring Sensor Node WSN Menggunakan Protokol Message Queue Telemetry Transport (MQTT)“. Jurnal Repositor 2, Nr. 1 (04.01.2020): 15. http://dx.doi.org/10.22219/repositor.v2i1.476.
Der volle Inhalt der QuelleYu, Song Sen, Yun Peng und Jia Jing Zhang. „A Lightweight RFID Mechanism Design“. Advanced Materials Research 216 (März 2011): 120–23. http://dx.doi.org/10.4028/www.scientific.net/amr.216.120.
Der volle Inhalt der QuelleTsai, Chia-Wei, Chun-Wei Yang und Narn-Yih Lee. „Lightweight mediated semi-quantum key distribution protocol“. Modern Physics Letters A 34, Nr. 34 (05.11.2019): 1950281. http://dx.doi.org/10.1142/s021773231950281x.
Der volle Inhalt der QuelleWu, Yongdong, und Hweehua Pang. „A Lightweight Buyer-Seller Watermarking Protocol“. Advances in Multimedia 2008 (2008): 1–7. http://dx.doi.org/10.1155/2008/905065.
Der volle Inhalt der QuelleSafkhani, Masoumeh, Nasour Bagheri und Mahyar Shariat. „On the Security of Rotation Operation Based Ultra-Lightweight Authentication Protocols for RFID Systems“. Future Internet 10, Nr. 9 (21.08.2018): 82. http://dx.doi.org/10.3390/fi10090082.
Der volle Inhalt der QuelleOh, JiHyeon, SungJin Yu, JoonYoung Lee, SeungHwan Son, MyeongHyun Kim und YoungHo Park. „A Secure and Lightweight Authentication Protocol for IoT-Based Smart Homes“. Sensors 21, Nr. 4 (21.02.2021): 1488. http://dx.doi.org/10.3390/s21041488.
Der volle Inhalt der QuelleMansoor, Khwaja, Anwar Ghani, Shehzad Chaudhry, Shahaboddin Shamshirband, Shahbaz Ghayyur und Amir Mosavi. „Securing IoT-Based RFID Systems: A Robust Authentication Protocol Using Symmetric Cryptography“. Sensors 19, Nr. 21 (01.11.2019): 4752. http://dx.doi.org/10.3390/s19214752.
Der volle Inhalt der QuelleHe, Hong, Qi Li und Zhi Hong Zhang. „RFID Security Authentication Protocol Based on Hash for the Lightweight RFID Systems“. Applied Mechanics and Materials 380-384 (August 2013): 2831–36. http://dx.doi.org/10.4028/www.scientific.net/amm.380-384.2831.
Der volle Inhalt der QuelleChen, Chien-Ming, Shuai-Min Chen, Xinying Zheng, Pei-Yu Chen und Hung-Min Sun. „A Secure RFID Authentication Protocol Adopting Error Correction Code“. Scientific World Journal 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/704623.
Der volle Inhalt der QuelleAseeri, Aisha, und Omaimah Bamasag. „Achieving protection against man-in-the-middle attack in HB family protocols implemented in RFID tags“. International Journal of Pervasive Computing and Communications 12, Nr. 3 (05.09.2016): 375–90. http://dx.doi.org/10.1108/ijpcc-03-2016-0015.
Der volle Inhalt der QuelleDissertationen zum Thema "Lightweight protokol"
Dvorský, Petr. „Datový koncentrátor“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442455.
Der volle Inhalt der QuelleVidal, Allan. „libfluid: a lightweight OpenFlow framework“. Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/639.
Der volle Inhalt der QuelleRedes-definidas por software (SDN) introduzem um paradigma de controle de redes que é centralizado em um software controlador, que se comunica com dispositivos de rede através de protocolos padronizados para configurar suas políticas de encaminhamento. Implementações existentes de protocolos SDN (como OpenFlow) são geralmente construídas para uma plataforma de controlador ou dispositivo de rede e restringem escolhas como linguagem de programação, versões do protocolo a serem usadas e características suportadas. Uma arquitetura de software que permita controladores e dispositivos de rede usarem o protocolo OpenFlow (em versões existentes e futuras) pode beneficiar desenvolvedores de aplicações de redes e fabricantes, reduzindo o esforço de de desenvolvimento. Para este fim, apresentamos libfluid: um arcabouço leve (simples e minimalista) para adicionar suporte a OpenFlow onde ele for necessário. Construímos uma única base de código para implementar suporte ao protocolo de maneira portável, rápida e fácil de usar, um desafio que envolve escolhas de tecnologia, decisões arquiteturais e a definição de uma API mínimalística. A implementação foi testada com sucesso em todos os cenários propostos e contribui com o estado da arte através de alguns novos paradigmas para arcabouços OpenFlow.
Software-defined networking (SDN) introduces a network control paradigm that is centered in controller software that communicates with networking devices via standardized protocols in order to configure their forwarding behavior. Current SDN control protocol implementations (such as OpenFlow) are usually built for one controller or networking device platform, and restrict choices regarding programming languages, protocol versions and feature. A single software architecture that enables controllers and networking devices to use the OpenFlow protocol (for existing and future protocol versions) can benefit network application developers and manufacturers, reducing development effort. Towards this goal, we present libfluid: a lightweight (simple and minimalistic) framework for adding OpenFlow support wherever it is needed. We built a single code base for implementing protocol support in a portable, fast and easy to use manner, a challenge that involved technology choices, architectural decisions and the definition of a minimal API. The implementation was shown to work in all proposed scenarios and contributes to the state-of-the-art with a few novel paradigms for OpenFlow frameworks.
Wang, Yingzhuo. „PDF shopping system with the lightweight currency protocol“. CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2820.
Der volle Inhalt der QuelleMtita, Collins. „Lightweight serverless protocols for the internet of things“. Thesis, Evry, Institut national des télécommunications, 2016. http://www.theses.fr/2016TELE0010/document.
Der volle Inhalt der QuelleThis thesis addresses the security and privacy challenges relevant to the resource constrained devices in the era of pervasive computing. Pervasive computing, a term coined by Schechter to describe the idea of computing services available anytime, anywhere and on demand, is characterized by seamless interactions between heterogeneous players in the Internet. This phenomenon allows intelligent chips, sensors or microcontrollers to be embedded into everyday objects to enable them generate, communicate and share information. Pervasive computing accelerates technological evolution by integrating small and resource constrained devices to the Internet arena, eventually opening doors to new services requiring seamless interactions and integrations with the existing technologies, infrastructures and services. The nature of the information generated, stored and shared by resource constrained devices may require proper security and privacy guarantees. Towards that end, the classical security solutions are not ideal candidates to solve the security and privacy challenges in pervasive systems for two reasons. First, classical security protocols require a lot of resources from the host devices while most of the pervasive devices have very strict resource constraints. Second, most classical security solutions work in a connected mode, which requires constant communication between devices and centralized servers for authentication and authorization purposes. However, pervasive devices may be working in isolated areas with intermittent network coverage and connectivity. Thus, it is ideal to come up with alternative solutions suitable for heterogeneous pervasive devices to smoothly interact, authenticate and securely share information. One of the suitable alternative solutions is the serverless protocols. The term “serverless protocol” refers to the mechanism of enabling centrally controlled devices to autonomously authenticate one another, or other heterogeneous devices, without an active participation of the centralized authentication or authorization servers. Serverless protocols prioritize on securing proximity communication between heterogeneous devices while optimizing on the little resources available. In this thesis, we tackle the challenges of pervasive systems by proposing lightweight and efficient serverless protocols for authenticating heterogeneous pervasive devices during proximity communication. Our proposed protocols derive their originality from the fact that they do not require the communicating parties to have prior relationships with each other, nor to have any previously shared authentication information with each other. Moreover, our proposed solutions incorporate context information to enforce automatic parameter expiry. This property is not supported by most of the earlier versions of the serverless protocol schemes, hence making them vulnerable to different attacks. Three novel contributions are proposed in this thesis. First, we propose a serverless lightweight mutual authentication protocol for heterogeneous devices. The first contribution includes a formal validation using the AVISPA tool. Second, we propose two complementing protocols using RFID (Radio-Frequency Identification) as a core technology. The first protocol performs mass authentication between an RFID reader and a group of tags and the second protocol performs a secure search for a target tag among a group of tags. The second contribution includes two formal validations; one is done using the AVISPA tool and the other is done using the CryptoVerif tool. After a thorough study of serverless protocols, we propose our third contribution, a concise guide on how to develop secure and efficient serverless protocols relevant to the pervasive systems
Wang, Jun. „Vidi: a Lightweight Protocol Between Visualization Systems and Digital Libraries“. Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/33845.
Der volle Inhalt der QuelleMaster of Science
Pinto, Carol Suman. „Optimization of Physical Unclonable Function Protocols for Lightweight Processing“. Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/72868.
Der volle Inhalt der QuelleMaster of Science
McGinnis, Jarred P. „On the mutability of protocols“. Thesis, University of Edinburgh, 2006. http://hdl.handle.net/1842/1403.
Der volle Inhalt der QuelleAnglés, Tafalla Carles. „Lightweight and Privacy-Preserving Access Protocols for Low Emission Zones“. Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/670492.
Der volle Inhalt der QuelleLas Zonas de Bajas Emisiones (ZBE), es decir, áreas donde se aplican ciertas restricciones o recargos a sus usuarios de acuerdo con las emisiones de sus vehículos, se han convertido en uno de los mecanismos más populares para abordar la congestión vial y la contaminación medioambiental en las grandes ciudades. Aunque las ZBE han demostrado ser efectivas contra esta problemática, también han sido motivo de crítica en la literatura actual debido a la amenaza que representan para la privacidad de sus usuarios. Los sistemas desplegados actualmente para hacer cumplir las restricciones que implementan las ZBEs dependen del uso indiscriminado de redes de cámaras para determinar la ubicación de los usuarios, requiriendo un gran número de infraestructuras dificultando su despliegue en escenarios reales. Además, todos estos sistemas revelan una fuerte dependencia hacia entidades centralizadas en la verificación de acceso de vehículos y el cobro de tarifas, introduciendo un “Single Point of Failure” que representa una amenaza para la seguridad y estabilidad de dichos sistemas. El objetivo de esta tesis es contribuir con nuevos protocolos para el control de acceso en ZBE con el fin de abordar los problemas de implementación y centralización presentes en los trabajos de la literatura actual, proporcionando medidas efectivas contra el fraude que preserven la privacidad de los usuarios honestos. Bajo estas premisas, en nuestra primera contribución proponemos un sistema de control de acceso para ZBE lo suficientemente ligero computacionalmente como para ser utilizado en infraestructuras de bajo coste. En lo que respecta a nuestra segunda y tercera contribución, se proponen dos protocolos de control de acceso para ZBE con el objetivo de poner fin a la centralización que ostentan algunas terceras partes en los procesos de registro del acceso de vehículos y cómputo de tarifas en favor del paradigma descentralizado que confiere el Blockchain.
In the last years, Low Emission Zones (LEZ), i.e. areas where some restrictions and surcharges are applied to polluting vehicles, have emerged as one of the most popular mechanisms to tackle urban traffic congestion and environmental pollution. The rapid proliferation of LEZs through all Europe is clear example of this increasing trend. Even though LEZs have proven to be an effective measure against those issues, they have also been criticized in the literature due to the relevant privacy threat that they pose to the drivers passing by. In particular, current deployed systems used to enforce LEZs strongly depend on the indiscriminate use of camera networks to track the drivers' whereabouts, requiring infrastructures that can hinder their deployment in real scenarios. Moreover, these solutions also reveal a strong dependence on centralized entities to manage the vehicles' access acknowledgment, fare ascertaining and fee payment. The inherent reliance on those entities poses a single point of failure, jeopardizing the system's security and stability. The aim of this thesis is to contribute with novel privacy-preserving protocols for LEZ Access Control schemes which tackle the deployability and centralization issues found in the current literature works, while providing effective anti-fraud measures to preserve the privacy of the drivers who behave honestly. Under these premises, in the first contribution, we propose an access control system for LEZs lightweight enough to be used in low-cost infrastructures, whose cornerstone is its deployability in real scenarios. Regarding our second and third contributions, two access control protocols for LEZs are proposed in order to shed the centralized position that third parties, responsible of registering vehicle accesses and charging fees, hold in favor of the blockchain decentralized paradigm. The privacy-preserving mechanisms used in those works address the user's privacy requirements that a public ledger like blockchain demands.
Ferrari, Nico. „Context-Based Authentication and Lightweight Group Key Establishment Protocol for IoT Devices“. Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36975.
Der volle Inhalt der QuelleGebremichael, Teklay. „Lightweight Cryptographic Group Key Management Protocols for the Internet of Things“. Licentiate thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-35607.
Der volle Inhalt der QuelleVid tidpunkten för framläggningen av avhandlingen var följande delarbete opublicerat: delarbete 3 (manuskript).
At the time of the defence the following paper was unpublished: paper 3 (manuscript).
SMART (Smarta system och tjänster för ett effektivt och innovativt samhälle)
Bücher zum Thema "Lightweight protokol"
Howes, Tim. LDAP: Programming directory-enabled applications with lightweight directory access protocol. Indianapolis, Ind: Macmillan Technical Publishing, 1997.
Den vollen Inhalt der Quelle findenPeter, Loshin, Hrsg. Big book of lightweight directory access protocol (LDAP) RFCs. San Francisco, Calif: Morgan Kaufmann, 2000.
Den vollen Inhalt der Quelle findenBlokdyk, Gerardus. Lightweight Directory Access Protocol a Complete Guide - 2020 Edition. Emereo Pty Limited, 2020.
Den vollen Inhalt der Quelle findenHillar, Gaston C. Hands-On MQTT Programming with Python: Work with the lightweight IoT protocol in Python. Packt Publishing, 2018.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Lightweight protokol"
Heer, Tobias. „Lightweight HIP“. In Host Identity Protocol (HIP), 117–59. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470772898.ch8.
Der volle Inhalt der QuelleCarpent, Xavier, Paolo D’Arco und Roberto De Prisco. „Ultra-lightweight Authentication“. In Security of Ubiquitous Computing Systems, 99–112. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-10591-4_6.
Der volle Inhalt der QuelleStepan, Jan, Richard Cimler, Jan Matyska, David Sec und Ondrej Krejcar. „Lightweight Protocol for M2M Communication“. In Computational Collective Intelligence, 335–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67077-5_32.
Der volle Inhalt der QuelleMalcolm, James. „Lightweight Authentication in a Mobile Network“. In Security Protocols, 217–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45807-7_31.
Der volle Inhalt der QuelleBonneau, Joseph, und Rubin Xu. „Scrambling for Lightweight Censorship Resistance“. In Security Protocols XIX, 296–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25867-1_28.
Der volle Inhalt der QuelleŢiplea, Ferucio Laurenţiu. „A Lightweight Authentication Protocol for RFID“. In Communications in Computer and Information Science, 110–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44893-9_10.
Der volle Inhalt der QuelleVan Roy, Peter, Per Brand, Seif Haridi und Raphaël Collet. „A Lightweight Reliable Object Migration Protocol“. In Internet Programming Languages, 32–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-47959-7_2.
Der volle Inhalt der QuelleBłaśkiewicz, Przemysław, Marek Klonowski, Mirosław Kutyłowski und Piotr Syga. „Lightweight Protocol for Trusted Spontaneous Communication“. In Trusted Systems, 228–42. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27998-5_15.
Der volle Inhalt der QuelleKungpisdan, Supakorn, Bala Srinivasan und Phu Dung Le. „Lightweight Mobile Credit-Card Payment Protocol“. In Progress in Cryptology - INDOCRYPT 2003, 295–308. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-24582-7_22.
Der volle Inhalt der QuellePatouni, Eleni, und Nancy Alonistioti. „Lightweight Mechanisms for Self-configuring Protocols“. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 112–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16644-0_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lightweight protokol"
„[Front cover]“. In 2011 Workshop on Lightweight Security & Privacy: Devices, Protocols, and Applications (LightSec 2011). IEEE, 2011. http://dx.doi.org/10.1109/lightsec.2011.20.
Der volle Inhalt der Quelle„[Copyright notice]“. In 2011 Workshop on Lightweight Security & Privacy: Devices, Protocols, and Applications (LightSec 2011). IEEE, 2011. http://dx.doi.org/10.1109/lightsec.2011.3.
Der volle Inhalt der Quelle„Table of contents“. In 2011 Workshop on Lightweight Security & Privacy: Devices, Protocols, and Applications (LightSec 2011). IEEE, 2011. http://dx.doi.org/10.1109/lightsec.2011.7.
Der volle Inhalt der QuelleBilgin, Begul, Elif Bilge Kavun und Tolga Yalcin. „Towards an Ultra Lightweight Crypto Processor“. In Privacy: Devices, Protocols, and Applications. IEEE, 2011. http://dx.doi.org/10.1109/lightsec.2011.17.
Der volle Inhalt der QuelleMulabegovic, Emir, Dan Schonfeld und Rashid Ansari. „Lightweight Streaming Protocol (LSP)“. In the tenth ACM international conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/641007.641051.
Der volle Inhalt der QuelleHammi, Mohamed Tahar, Erwan Livolant, Patrick Bellot, Ahmed Serhrouchni und Pascale Minet. „A lightweight IoT security protocol“. In 2017 1st Cyber Security in Networking Conference (CSNet). IEEE, 2017. http://dx.doi.org/10.1109/csnet.2017.8242001.
Der volle Inhalt der Quelle„PROTOCOL INDEPENDENT LIGHTWEIGHT SECURE COMMUNICATION“. In International Conference on Security and Cryptography. SciTePress - Science and and Technology Publications, 2006. http://dx.doi.org/10.5220/0002101002110218.
Der volle Inhalt der QuelleYuanxin Ouyang, Jiuyue Hao, Ting Zhang, Qiao Ren und Zhang Xiong. „Research on lightweight RFID Reader Protocol“. In 2008 First IEEE International Conference on Ubi-media Computing (U-Media 2008). IEEE, 2008. http://dx.doi.org/10.1109/umedia.2008.4570862.
Der volle Inhalt der QuelleSun, Aifeng. „Optimization Study for Lightweight Set Protocol“. In 2012 International Conference on Industrial Control and Electronics Engineering (ICICEE). IEEE, 2012. http://dx.doi.org/10.1109/icicee.2012.320.
Der volle Inhalt der QuelleLi, Ying, Liping Du, Guifen Zhao und Jianwei Guo. „A lightweight identity-based authentication protocol“. In 2013 IEEE International Conference on Signal Processing, Communications and Computing. IEEE, 2013. http://dx.doi.org/10.1109/icspcc.2013.6664134.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Lightweight protokol"
Calhoun, P., R. Suri, N. Cam-Winget, M. Williams, S. Hares, B. O'Hara und S. Kelly. Lightweight Access Point Protocol. RFC Editor, Februar 2010. http://dx.doi.org/10.17487/rfc5412.
Der volle Inhalt der QuelleYeong, W., T. Howes und S. Kille. Lightweight Directory Access Protocol. RFC Editor, März 1995. http://dx.doi.org/10.17487/rfc1777.
Der volle Inhalt der QuelleSermersheim, J., Hrsg. Lightweight Directory Access Protocol (LDAP): The Protocol. RFC Editor, Juni 2006. http://dx.doi.org/10.17487/rfc4511.
Der volle Inhalt der QuelleWahl, M., T. Howes und S. Kille. Lightweight Directory Access Protocol (v3). RFC Editor, Dezember 1997. http://dx.doi.org/10.17487/rfc2251.
Der volle Inhalt der QuelleZeilenga, K. Lightweight Directory Access Protocol (LDAP) Transactions. RFC Editor, März 2010. http://dx.doi.org/10.17487/rfc5805.
Der volle Inhalt der QuelleYeong, W., T. Howes und S. Kille. X.500 Lightweight Directory Access Protocol. RFC Editor, Juli 1993. http://dx.doi.org/10.17487/rfc1487.
Der volle Inhalt der QuelleSmith, M., O. Natkovich und J. Parham. Lightweight Directory Access Protocol (LDAP) Client Update Protocol (LCUP). Herausgegeben von R. Megginson. RFC Editor, Oktober 2004. http://dx.doi.org/10.17487/rfc3928.
Der volle Inhalt der QuelleHarrison, R., J. Sermersheim und Y. Dong. Lightweight Directory Access Protocol (LDAP) Bulk Update/Replication Protocol (LBURP). RFC Editor, Januar 2006. http://dx.doi.org/10.17487/rfc4373.
Der volle Inhalt der QuelleZeilenga, K. Lightweight Directory Access Protocol (LDAP) Assertion Control. RFC Editor, Juni 2006. http://dx.doi.org/10.17487/rfc4528.
Der volle Inhalt der QuelleZeilenga, K. Lightweight Directory Access Protocol (LDAP) Turn Operation. RFC Editor, Juni 2006. http://dx.doi.org/10.17487/rfc4531.
Der volle Inhalt der Quelle