Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lightweight protocol“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lightweight protocol" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lightweight protocol"
Tsai, Chia-Wei, Chun-Wei Yang und Narn-Yih Lee. „Lightweight mediated semi-quantum key distribution protocol“. Modern Physics Letters A 34, Nr. 34 (05.11.2019): 1950281. http://dx.doi.org/10.1142/s021773231950281x.
Der volle Inhalt der QuelleWu, Yongdong, und Hweehua Pang. „A Lightweight Buyer-Seller Watermarking Protocol“. Advances in Multimedia 2008 (2008): 1–7. http://dx.doi.org/10.1155/2008/905065.
Der volle Inhalt der QuelleGódor, Gyozo, und Sándor Imre. „Simple Lightweight Authentication Protocol“. International Journal of Business Data Communications and Networking 6, Nr. 3 (Juli 2010): 66–94. http://dx.doi.org/10.4018/jbdcn.2010070104.
Der volle Inhalt der QuelleYu, Song Sen, Yun Peng und Jia Jing Zhang. „A Lightweight RFID Mechanism Design“. Advanced Materials Research 216 (März 2011): 120–23. http://dx.doi.org/10.4028/www.scientific.net/amr.216.120.
Der volle Inhalt der Quelle赵, 士琦. „Improved Lightweight Anonymous Authentication Protocol“. Advances in Applied Mathematics 09, Nr. 05 (2020): 759–64. http://dx.doi.org/10.12677/aam.2020.95090.
Der volle Inhalt der QuelleYu, Ki-soon, Sung-joon Kim, Won-kyu Park, Min-Ho Jang und Dae-woon Lim. „Implement of Lightweight Security Protocol“. Journal of Korean Institute of Communications and Information Sciences 43, Nr. 4 (30.04.2018): 723–29. http://dx.doi.org/10.7840/kics.2018.43.4.723.
Der volle Inhalt der QuelleMansoor, Khwaja, Anwar Ghani, Shehzad Chaudhry, Shahaboddin Shamshirband, Shahbaz Ghayyur und Amir Mosavi. „Securing IoT-Based RFID Systems: A Robust Authentication Protocol Using Symmetric Cryptography“. Sensors 19, Nr. 21 (01.11.2019): 4752. http://dx.doi.org/10.3390/s19214752.
Der volle Inhalt der QuelleSafkhani, Masoumeh, Nasour Bagheri und Mahyar Shariat. „On the Security of Rotation Operation Based Ultra-Lightweight Authentication Protocols for RFID Systems“. Future Internet 10, Nr. 9 (21.08.2018): 82. http://dx.doi.org/10.3390/fi10090082.
Der volle Inhalt der QuelleOh, JiHyeon, SungJin Yu, JoonYoung Lee, SeungHwan Son, MyeongHyun Kim und YoungHo Park. „A Secure and Lightweight Authentication Protocol for IoT-Based Smart Homes“. Sensors 21, Nr. 4 (21.02.2021): 1488. http://dx.doi.org/10.3390/s21041488.
Der volle Inhalt der QuelleChen, Chien-Ming, Shuai-Min Chen, Xinying Zheng, Pei-Yu Chen und Hung-Min Sun. „A Secure RFID Authentication Protocol Adopting Error Correction Code“. Scientific World Journal 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/704623.
Der volle Inhalt der QuelleDissertationen zum Thema "Lightweight protocol"
Vidal, Allan. „libfluid: a lightweight OpenFlow framework“. Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/639.
Der volle Inhalt der QuelleRedes-definidas por software (SDN) introduzem um paradigma de controle de redes que é centralizado em um software controlador, que se comunica com dispositivos de rede através de protocolos padronizados para configurar suas políticas de encaminhamento. Implementações existentes de protocolos SDN (como OpenFlow) são geralmente construídas para uma plataforma de controlador ou dispositivo de rede e restringem escolhas como linguagem de programação, versões do protocolo a serem usadas e características suportadas. Uma arquitetura de software que permita controladores e dispositivos de rede usarem o protocolo OpenFlow (em versões existentes e futuras) pode beneficiar desenvolvedores de aplicações de redes e fabricantes, reduzindo o esforço de de desenvolvimento. Para este fim, apresentamos libfluid: um arcabouço leve (simples e minimalista) para adicionar suporte a OpenFlow onde ele for necessário. Construímos uma única base de código para implementar suporte ao protocolo de maneira portável, rápida e fácil de usar, um desafio que envolve escolhas de tecnologia, decisões arquiteturais e a definição de uma API mínimalística. A implementação foi testada com sucesso em todos os cenários propostos e contribui com o estado da arte através de alguns novos paradigmas para arcabouços OpenFlow.
Software-defined networking (SDN) introduces a network control paradigm that is centered in controller software that communicates with networking devices via standardized protocols in order to configure their forwarding behavior. Current SDN control protocol implementations (such as OpenFlow) are usually built for one controller or networking device platform, and restrict choices regarding programming languages, protocol versions and feature. A single software architecture that enables controllers and networking devices to use the OpenFlow protocol (for existing and future protocol versions) can benefit network application developers and manufacturers, reducing development effort. Towards this goal, we present libfluid: a lightweight (simple and minimalistic) framework for adding OpenFlow support wherever it is needed. We built a single code base for implementing protocol support in a portable, fast and easy to use manner, a challenge that involved technology choices, architectural decisions and the definition of a minimal API. The implementation was shown to work in all proposed scenarios and contributes to the state-of-the-art with a few novel paradigms for OpenFlow frameworks.
Wang, Yingzhuo. „PDF shopping system with the lightweight currency protocol“. CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2820.
Der volle Inhalt der QuelleWang, Jun. „Vidi: a Lightweight Protocol Between Visualization Systems and Digital Libraries“. Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/33845.
Der volle Inhalt der QuelleMaster of Science
Ferrari, Nico. „Context-Based Authentication and Lightweight Group Key Establishment Protocol for IoT Devices“. Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36975.
Der volle Inhalt der QuelleIsrar, Junaid. „Design of Lightweight Alternatives to Secure Border Gateway Protocol and Mitigate against Control and Data Plane Attacks“. Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22812.
Der volle Inhalt der QuelleEvans, B. J. „The construction of a virtual multicomputer based on heterogeneous processors by use of a lightweight multicast protocol“. Thesis, University of Reading, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357126.
Der volle Inhalt der QuelleEdelev, Sviatoslav [Verfasser], Dieter [Akademischer Betreuer] Hogrefe und Xiaoming [Akademischer Betreuer] Fu. „Towards a Lightweight, Secure, and Untraceable RFID Authentication Protocol / Sviatoslav Edelev. Gutachter: Dieter Hogrefe ; Xiaoming Fu. Betreuer: Dieter Hogrefe“. Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://d-nb.info/1076673597/34.
Der volle Inhalt der QuellePorambage, P. (Pawani). „Lightweight authentication and key management of wireless sensor networks for Internet of things“. Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526219950.
Der volle Inhalt der QuelleTiivistelmä Esineiden internet (IoT) on viime aikoina yleistynyt konsepti älykkäiden objektien (smart objects) liittämiseksi internetiin käyttämällä erilaisia verkko- ja kommunikaatioteknologioita. Olennaisimpia esineiden internetin pohjalla toimivia teknologioita ovat langattomat sensoriverkot (WSN), jotka ovat esineiden internetin perusrakennuspalikoita. Esineiden internetiin kytketyt langattomat sensoriverkot mahdollistavat laajan joukon erilaisia sovelluksia, kuten älykodit, etäterveydenhuollon, älykkäät kaupungit sekä älykkäät teollisuuden sovellukset. Langattomien sensoriverkkojen ja esineiden internetin yhdistäminen tuo mukanaan myös tietoturvaan liittyviä haasteita, sillä laskentateholtaan yleensä heikot anturit ja toimilaitteet eivät kykene kovin vaativiin tietoturvaoperaatioihin, joihin lukeutuvat mm. tietoturva-avaimen muodostus ja käyttäjäntunnistus. Tässä väitöskirjassa pyritään vastaamaan haasteeseen käyttämällä kevyitä avaimenmuodostus- ja käyttäjäntunnistusratkaisuja esineiden internetiin kytketyissä resurssirajoitetuissa sensoriverkoissa. Väitöstutkimuksessa keskitytään aluksi implisiittisten sertifikaattien käyttöön tietoturvallisten end-to-end-kommunikaatiokanavien alustamisessa resurssirajoitettujen sensori- ja muiden IoT-laitteiden välillä. Implisiittisiä sertifikaatteja käytetään käyttäjäntunnistuksessa sekä avaimenmuodostuksessa. Kehitettyjen ratkaisujen soveltuvuus tarkoitukseen osoitetaan suorituskykymittauksilla sekä vertaamalla niiden tietoturvaomi- naisuuksia. Seuraavaksi väitöskirjassa esitellään kaksi kevyttä ryhmäavaimenmuodostus- protokollaa tietoturvalliseen ryhmäkommunikaatioon resurssirajoitettujen IoT-laitteiden välillä. Lopuksi väitöskirjassa tarkastellaan lupaavia lähestymistapoja olemassa olevien tietoturvaprotokollien räätäläintiin IoT-laitteiden ja -verkkojen ominaisuuksille sopiviksi. Erityistä huomiota kiinnitetään Host Identity -protokollan (HIP) eri versioiden käyttöön dynaamisten ja tietoturvallisten end-to-end-yhteyksien luomiseen toisilleen ennestään tuntemattomien erityyppisten IoT-laitteiden välillä, joiden laitteistoresurssiprofiilit voivat olla hyvin erilaiset. Väitöskirjan keskeinen tulos on väitöskirjatyössä kehitetty Colla- borative HIP (CHIP) -protokolla, joka on resurssitehokas avaimenmuodostusteknologia resurssirajoitetuille IoT-laitteille. Kehitetyn teknologian soveltuvuutta tarkoitukseensa demonstroidaan prototyyppitoteutuksella tehtyjen suorituskykymittausten avulla
Dvorský, Petr. „Datový koncentrátor“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442455.
Der volle Inhalt der QuelleCherif, Amina. „Sécurité des RFIDs actifs et applications“. Thesis, Limoges, 2021. http://www.theses.fr/2021LIMO0015.
Der volle Inhalt der QuelleOver the 30 last years, active RFID devices have evolved from nodes dedicated to identification to autonomous nodes that, in addition, sense (from environment or other sources) and exchange data. Consequently, the range of their applications has rapidly grown from identification only to monitoring and real time localisation. In recent years, thanks to their advantages, the use of active RFID nodes for mobile data collection has attracted significant attention. However, in most scenarios, these nodes are unattended in an adverse environments, so data must be securely stored and transmitted to prevent attack by active adversaries: even if the nodes are captured, data confidentiality must be ensured. Furthermore, due to the scarce resources available to nodes in terms of energy, storage and/or computation, the used security solution has to be lightweight. This thesis is divided in two parts. In the first, we will study in details the evolution of active RFID nodes and their security. We will then, present, in the second part, a new serverless protocol to enable MDCs (Mobile Data Collectors), such as drones, to collect data from mobile and static Active RFID nodes and then deliver them later to an authorized third party. The whole solution ensures data confidentiality at each step (from the sensing phase, before data collection by the MDC, once data have been collected by MDC, and during final delivery) while fulfilling the lightweight requirements for the resource-limited entities involved. To assess the suitability of the protocol against the performance requirements, we will implement it on the most resource-constrained secure devices to prove its efficiency even in the worst conditions. In addition, to prove the protocol fulfills the security requirements, we will analyze it using security games and we will also formally verify it using the AVISPA and ProVerif tools
Bücher zum Thema "Lightweight protocol"
Howes, Tim. LDAP: Programming directory-enabled applications with lightweight directory access protocol. Indianapolis, Ind: Macmillan Technical Publishing, 1997.
Den vollen Inhalt der Quelle findenPeter, Loshin, Hrsg. Big book of lightweight directory access protocol (LDAP) RFCs. San Francisco, Calif: Morgan Kaufmann, 2000.
Den vollen Inhalt der Quelle findenBlokdyk, Gerardus. Lightweight Directory Access Protocol a Complete Guide - 2020 Edition. Emereo Pty Limited, 2020.
Den vollen Inhalt der Quelle findenHillar, Gaston C. Hands-On MQTT Programming with Python: Work with the lightweight IoT protocol in Python. Packt Publishing, 2018.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Lightweight protocol"
Heer, Tobias. „Lightweight HIP“. In Host Identity Protocol (HIP), 117–59. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470772898.ch8.
Der volle Inhalt der QuelleStepan, Jan, Richard Cimler, Jan Matyska, David Sec und Ondrej Krejcar. „Lightweight Protocol for M2M Communication“. In Computational Collective Intelligence, 335–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67077-5_32.
Der volle Inhalt der QuelleŢiplea, Ferucio Laurenţiu. „A Lightweight Authentication Protocol for RFID“. In Communications in Computer and Information Science, 110–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44893-9_10.
Der volle Inhalt der QuelleVan Roy, Peter, Per Brand, Seif Haridi und Raphaël Collet. „A Lightweight Reliable Object Migration Protocol“. In Internet Programming Languages, 32–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-47959-7_2.
Der volle Inhalt der QuelleBłaśkiewicz, Przemysław, Marek Klonowski, Mirosław Kutyłowski und Piotr Syga. „Lightweight Protocol for Trusted Spontaneous Communication“. In Trusted Systems, 228–42. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27998-5_15.
Der volle Inhalt der QuelleKungpisdan, Supakorn, Bala Srinivasan und Phu Dung Le. „Lightweight Mobile Credit-Card Payment Protocol“. In Progress in Cryptology - INDOCRYPT 2003, 295–308. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-24582-7_22.
Der volle Inhalt der QuelleRadu, Andreea-Ina, und Flavio D. Garcia. „LeiA: A Lightweight Authentication Protocol for CAN“. In Computer Security – ESORICS 2016, 283–300. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45741-3_15.
Der volle Inhalt der QuelleNăstase, George-Daniel, und Ferucio Laurenţiu Ţiplea. „On a Lightweight Authentication Protocol for RFID“. In Innovative Security Solutions for Information Technology and Communications, 212–25. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27179-8_15.
Der volle Inhalt der QuelleCheng, Xiaohui, Shuai Shen und Qiong Gui. „Improved Lightweight RFID Bidirectional Authentication Protocol LMAP++“. In Communications in Computer and Information Science, 33–40. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6834-9_4.
Der volle Inhalt der QuelleZhang, Changlun, und Haibing Mu. „A Lightweight Mutual Authentication Protocol for RFID“. In Lecture Notes in Electrical Engineering, 933–40. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7262-5_106.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lightweight protocol"
Mulabegovic, Emir, Dan Schonfeld und Rashid Ansari. „Lightweight Streaming Protocol (LSP)“. In the tenth ACM international conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/641007.641051.
Der volle Inhalt der QuelleHammi, Mohamed Tahar, Erwan Livolant, Patrick Bellot, Ahmed Serhrouchni und Pascale Minet. „A lightweight IoT security protocol“. In 2017 1st Cyber Security in Networking Conference (CSNet). IEEE, 2017. http://dx.doi.org/10.1109/csnet.2017.8242001.
Der volle Inhalt der Quelle„PROTOCOL INDEPENDENT LIGHTWEIGHT SECURE COMMUNICATION“. In International Conference on Security and Cryptography. SciTePress - Science and and Technology Publications, 2006. http://dx.doi.org/10.5220/0002101002110218.
Der volle Inhalt der QuelleYuanxin Ouyang, Jiuyue Hao, Ting Zhang, Qiao Ren und Zhang Xiong. „Research on lightweight RFID Reader Protocol“. In 2008 First IEEE International Conference on Ubi-media Computing (U-Media 2008). IEEE, 2008. http://dx.doi.org/10.1109/umedia.2008.4570862.
Der volle Inhalt der QuelleSun, Aifeng. „Optimization Study for Lightweight Set Protocol“. In 2012 International Conference on Industrial Control and Electronics Engineering (ICICEE). IEEE, 2012. http://dx.doi.org/10.1109/icicee.2012.320.
Der volle Inhalt der QuelleLi, Ying, Liping Du, Guifen Zhao und Jianwei Guo. „A lightweight identity-based authentication protocol“. In 2013 IEEE International Conference on Signal Processing, Communications and Computing. IEEE, 2013. http://dx.doi.org/10.1109/icspcc.2013.6664134.
Der volle Inhalt der QuelleYang, Shun, Xian'ai Long und Defa Hu. „A Lightweight Buyer-Seller Fingerprinting Protocol“. In 2010 International Forum on Information Technology and Applications (IFITA). IEEE, 2010. http://dx.doi.org/10.1109/ifita.2010.148.
Der volle Inhalt der QuelleAzad, Salahuddin, und Biplob Ray. „A Lightweight Protocol for RFID Authentication“. In 2019 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE). IEEE, 2019. http://dx.doi.org/10.1109/csde48274.2019.9162420.
Der volle Inhalt der QuelleGoutsos, Konstantinos, und Alex Bystrov. „Lightweight PUF-based Continuous Authentication Protocol“. In 2019 International Conference on Computing, Electronics & Communications Engineering (iCCECE). IEEE, 2019. http://dx.doi.org/10.1109/iccece46942.2019.8941608.
Der volle Inhalt der QuelleBezzateev, Sergey, und Danil Kovalev. „RFID advanced ultra lightweight authentication protocol“. In 2012 XIII International Symposium on Problems of Redundancy in Information and Control Systems (RED). IEEE, 2012. http://dx.doi.org/10.1109/red.2012.6338395.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Lightweight protocol"
Calhoun, P., R. Suri, N. Cam-Winget, M. Williams, S. Hares, B. O'Hara und S. Kelly. Lightweight Access Point Protocol. RFC Editor, Februar 2010. http://dx.doi.org/10.17487/rfc5412.
Der volle Inhalt der QuelleYeong, W., T. Howes und S. Kille. Lightweight Directory Access Protocol. RFC Editor, März 1995. http://dx.doi.org/10.17487/rfc1777.
Der volle Inhalt der QuelleSermersheim, J., Hrsg. Lightweight Directory Access Protocol (LDAP): The Protocol. RFC Editor, Juni 2006. http://dx.doi.org/10.17487/rfc4511.
Der volle Inhalt der QuelleWahl, M., T. Howes und S. Kille. Lightweight Directory Access Protocol (v3). RFC Editor, Dezember 1997. http://dx.doi.org/10.17487/rfc2251.
Der volle Inhalt der QuelleSmith, M., O. Natkovich und J. Parham. Lightweight Directory Access Protocol (LDAP) Client Update Protocol (LCUP). Herausgegeben von R. Megginson. RFC Editor, Oktober 2004. http://dx.doi.org/10.17487/rfc3928.
Der volle Inhalt der QuelleZeilenga, K. Lightweight Directory Access Protocol (LDAP) Transactions. RFC Editor, März 2010. http://dx.doi.org/10.17487/rfc5805.
Der volle Inhalt der QuelleYeong, W., T. Howes und S. Kille. X.500 Lightweight Directory Access Protocol. RFC Editor, Juli 1993. http://dx.doi.org/10.17487/rfc1487.
Der volle Inhalt der QuelleHarrison, R., J. Sermersheim und Y. Dong. Lightweight Directory Access Protocol (LDAP) Bulk Update/Replication Protocol (LBURP). RFC Editor, Januar 2006. http://dx.doi.org/10.17487/rfc4373.
Der volle Inhalt der QuelleZeilenga, K. Lightweight Directory Access Protocol (LDAP) Assertion Control. RFC Editor, Juni 2006. http://dx.doi.org/10.17487/rfc4528.
Der volle Inhalt der QuelleZeilenga, K. Lightweight Directory Access Protocol (LDAP) Turn Operation. RFC Editor, Juni 2006. http://dx.doi.org/10.17487/rfc4531.
Der volle Inhalt der Quelle