Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Light angular momentum“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Light angular momentum" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Light angular momentum"
Stewart *, A. M. „Angular momentum of light“. Journal of Modern Optics 52, Nr. 8 (20.05.2005): 1145–54. http://dx.doi.org/10.1080/09500340512331326832.
Der volle Inhalt der QuelleFranke-Arnold, Sonja. „Optical angular momentum and atoms“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, Nr. 2087 (28.02.2017): 20150435. http://dx.doi.org/10.1098/rsta.2015.0435.
Der volle Inhalt der QuelleSchimmoller, Alex, Spencer Walker und Alexandra S. Landsman. „Photonic Angular Momentum in Intense Light–Matter Interactions“. Photonics 11, Nr. 9 (17.09.2024): 871. http://dx.doi.org/10.3390/photonics11090871.
Der volle Inhalt der QuelleMasalov, A. V., und V. G. Niziev. „Angular momentum of gaussian light beams“. Bulletin of the Russian Academy of Sciences: Physics 80, Nr. 7 (Juli 2016): 760–65. http://dx.doi.org/10.3103/s1062873816070170.
Der volle Inhalt der QuelleNairat, Mazen. „Axial Angular Momentum of Bessel Light“. Photonics Letters of Poland 10, Nr. 1 (31.03.2018): 23. http://dx.doi.org/10.4302/plp.v10i1.787.
Der volle Inhalt der QuelleRitsch-Marte, Monika. „Orbital angular momentum light in microscopy“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, Nr. 2087 (28.02.2017): 20150437. http://dx.doi.org/10.1098/rsta.2015.0437.
Der volle Inhalt der QuelleOrnigotti, Marco, und Andrea Aiello. „Surface angular momentum of light beams“. Optics Express 22, Nr. 6 (13.03.2014): 6586. http://dx.doi.org/10.1364/oe.22.006586.
Der volle Inhalt der QuelleHugrass, W. N. „Angular Momentum Balance on Light Reflection“. Journal of Modern Optics 37, Nr. 3 (März 1990): 339–51. http://dx.doi.org/10.1080/09500349014550401.
Der volle Inhalt der QuelleZhou, Hailong, Jianji Dong, Jian Wang, Shimao Li, Xinlun Cai, Siyuan Yu und Xinliang Zhang. „Orbital Angular Momentum Divider of Light“. IEEE Photonics Journal 9, Nr. 1 (Februar 2017): 1–8. http://dx.doi.org/10.1109/jphot.2016.2645896.
Der volle Inhalt der QuelleBallantine, Kyle E., John F. Donegan und Paul R. Eastham. „There are many ways to spin a photon: Half-quantization of a total optical angular momentum“. Science Advances 2, Nr. 4 (April 2016): e1501748. http://dx.doi.org/10.1126/sciadv.1501748.
Der volle Inhalt der QuelleDissertationen zum Thema "Light angular momentum"
Cameron, Robert P. „On the angular momentum of light“. Thesis, University of Glasgow, 2014. http://theses.gla.ac.uk/5849/.
Der volle Inhalt der QuelleVannier, dos santos borges Carolina. „Bell inequalities with Orbital Angular Momentum of Light“. Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00767216.
Der volle Inhalt der QuelleVannier, Dos Santos Borges Carolina. „Bell inequalities with Orbital Angular Momentum of Light“. Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112225/document.
Der volle Inhalt der QuelleWe shall present a theoretical description of paraxial beams, showing the propagation modes that arise from the solution of the paraxial equation in free space. We then discuss the angular momentum carried by light beams, with its decomposition in spin and orbital angular momentum and its quantization. We present the polarization and transverse modes of a beam as potential degrees of freedom to encode information. We define the Spin-Orbit modes and explain the experimental methods to produce such modes. We then apply the Spin-Orbit modes to perform a BB84 quantum key distribution protocol without a shared reference frame.We propose a Bell-like inequality criterion as a sufficient condition for the spin-orbit non-separability of a classical laser beam. We show that the notion of separable and non-separable spin-orbit modes in classical optics builds a useful analogy with entangled quantum states, allowing for the study of some of their important mathematical properties. We present a detailed quantum optical description of the experiment in which a comprehensive range of quantum states are considered.Following the study of Bell's inequalities we consider bipartite quantum systems characterized by a continuous angular variable θ. We show how to reveal non-locality on this type of system using inequalities similar to CHSH ones, originally derived for bipartite spin 1/2 like systems. Such inequalities involve correlated measurement of continuous angular functions and are equivalent to the continuous superposition of CHSH inequalities acting on two-dimensional subspaces of the infinite dimensional Hilbert space. As an example, we discuss in detail one application of our results, which consists in measuring orientation correlations on the transverse profile of entangled photons
Gotte, Jorge Bernhard. „Integral and fractional orbital angular momentum of light“. Thesis, University of Strathclyde, 2006. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=26372.
Der volle Inhalt der QuelleNeo, Richard. „Measuring the Orbital Angular Momentum of Light for Astronomy“. Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17718.
Der volle Inhalt der QuelleChang, Yuan-Pin. „Novel probes of angular momentum polarization“. Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:d3880edf-436a-415e-8a74-6b1c0fd26e65.
Der volle Inhalt der QuelleMcLaren, Melanie. „Tailoring quantum entanglement of orbital angular momentum“. Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95868.
Der volle Inhalt der QuelleENGLISH ABSTRACT: High-dimensional quantum entanglement offers an increase in information capacity per photon; a highly desirable property for quantum information processes such as quantum communication, computation and teleportation. As the orbital angular momentum (OAM) modes of light span an infinite-dimensional Hilbert space, they have become frontrunners in achieving entanglement in higher dimensions. In light of this, we investigate the potential of OAM entanglement of photons by controlling the parameters in both the generation and measurement systems. We show the experimental procedures and apparatus involved in generating and measuring entangled photons in two-dimensions. We verify important quantum tests such as the Einstein, Podolsky and Rosen (EPR) paradox using OAM and angle correlations, as well as a violation of a Bell-type inequality. By performing a full state tomography, we characterise our quantum state and show we have a pure, highly entangled quantum state. We demonstrate that this method can be extended to higher dimensions. The experimental techniques used to generate and measure OAM entanglement place an upper bound on the number of accessible OAM modes. As such, we investigate new methods in which to increase the spiral bandwidth of our generated quantum state. We alter the shape of the pump beam in spontaneous parametric down-conversion and demonstrate an effect on both OAM and angle correlations. We also made changes to the measurement scheme by projecting the photon pairs into the Bessel-Gaussian (BG) basis and demonstrate entanglement in this basis. We show that this method allows the measured spiral bandwidth to be optimised by simply varying the continuous radial parameter of the BG modes. We demonstrate that BG modes can be entangled in higher dimensions compared with the commonly used helical modes by calculating and comparing the linear entropy and fidelity for both modes. We also show that quantum entanglement can be accurately simulated using classical light using back-projection, which allows the study of projective measurements and predicts the strength of the coincidence correlations in an entanglement experiment. Finally, we make use of each of the techniques to demonstrate the effect of a perturbation on OAM entanglement measured in the BG basis. We investigate the self-healing property of BG beams and show that the classical property is translated to the quantum regime. By calculating the concurrence, we see that measured entanglement recovers after encountering an obstruction.
AFRIKAANSE OPSOMMING: Hoë-dimensionele kwantumverstrengeldheid bied ’n toename in inligtingskapasiteit per foton. Hierdie is ’n hoogs wenslike eienskap vir kwantum inligting prosesse soos kwantum kommunikasie, berekening en teleportasie. Omdat die orbitale hoekmomentum (OAM) modusse van lig ’n oneindig dimensionele Hilbertruimte beslaan, het dit voorlopers geword in die verkryging van verstrengeling in hoër dimensies. In die lig hiervan, ondersoek ons die potensiaal van OAM verstrengeling van fotone deur die parameters in beide die generering en meting stelsels te beheer. Ons toon die eksperimentele prosedures en apparaat wat betrokke is by die generering en die meet van verstrengelde fotone in twee dimensies. Ons verifieer kwantumtoetse, soos die Einstein, Podolsky en Rosen (EPR) paradoks vir OAM en die hoekkorrelasies, sowel as ’n skending van ’n Bell-tipe ongelykheid. Deur middel van ’n volledige toestand tomografie, karakteriseer ons die kwantum toestand en wys ons dat dit ’n suiwer, hoogs verstrengel kwantum toestand is. Ons toon ook dat hierdie metode uitgebrei kan word na hoër dimensies. Die eksperimentele tegnieke wat tydens die generasie en meet van OAM verstrengeling gebruik is, plaas ’n bogrens op die aantal toeganklik OAM modusse. Dus ondersoek ons nuwe metodes om die spiraal bandwydte van ons gegenereerde kwantum toestand te verhoog. Ons verander die vorm van die pomp bundel in spontane parametriese af-omskakeling en demonstreer die uitwerking daarvan op beide OAM en die hoekkorrelasies. Ons het ook veranderinge aan die meting skema gemaak deur die foton pare op die Bessel-Gauss (BG) basis te projekteer. Ons wys dat hierdie metode die gemeetde spiraal bandwydte kan optimeer deur eenvoudig die kontinue radiale parameter van die BG modes te verander. Ons demonstreer dat BG modusse verstrengel kan word in hoër dimensies as die heliese modusse, wat algemeen gebruik word, deur berekeninge te maak en te vergelyk met lineêre entropie en vir beide modusse. Ons wys ook dat kwantumverstrengling akkuraat nageboots kan word, met behulp van die klassieke lig terug-projeksie, wat die studie van projeksie metings toelaat en voorspel die krag van die saamval korrelasies in ’n verstrengeling eksperiment. Ten slotte, gebruik ons elk van die tegnieke om die effek van ’n storing op OAM verstrengling wat in die BG basis gemeet is, te demonstreer. Ons ondersoek die self-genesingseienskap van BG bundels en wys dat die klassieke eienskap vertaal na die kwantum-gebied. Deur die berekening van die konkurrensie (concurrence), sien ons dat die gemeetde verstrengeling herstel word nadat ’n obstruksie ondervind is.
Gelbord, Todd Richard. „On the geometry and topology of the angular momentum of light“. Thesis, Montana State University, 2010. http://etd.lib.montana.edu/etd/2010/gelbord/GelbordT0510.pdf.
Der volle Inhalt der QuellePadmabandu, Gamaralalage Gunasiri 1956. „Angular momentum of light and its mechanical effects on a birefringent medium“. Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276914.
Der volle Inhalt der QuelleAn, Fangzhao A. „Experimental Realization of Slowly Rotating Modes of Light“. Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/hmc_theses/53.
Der volle Inhalt der QuelleBücher zum Thema "Light angular momentum"
Andrews, David L., und Mohamed Babiker, Hrsg. The Angular Momentum of Light. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511795213.
Der volle Inhalt der QuelleAndrews, David L. The angular momentum of light. Cambridge: Cambridge University Press, 2012.
Den vollen Inhalt der Quelle findenAuzinsh, Marcis. Optical polarization of molecules. Cambridge: Cambridge University Press, 1995.
Den vollen Inhalt der Quelle findenStough, H. Paul. Flight investigation of stall, spin, and recovery characteristics of a low-wing, single-engine, T-tail light airplane. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985.
Den vollen Inhalt der Quelle findenEvans, Myron W. The light magnet, coupling of electronic and nuclear angular momenta in optical NMR and ESR: Quantum theory. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1991.
Den vollen Inhalt der Quelle findenSweeney, John Peter. Gamma-ray spectroscopy of the light rare earth nuclei 159Er, 160Er and 167Lu at high angula momenta. Manchester: University of Manchester, 1994.
Den vollen Inhalt der Quelle findenL, Andrews David, und Mohamed Babiker. Angular Momentum of Light. Cambridge University Press, 2012.
Den vollen Inhalt der Quelle findenL, Andrews David, und Mohamed Babiker. Angular Momentum of Light. Cambridge University Press, 2012.
Den vollen Inhalt der Quelle findenL, Andrews David, und Mohamed Babiker. Angular Momentum of Light. Cambridge University Press, 2012.
Den vollen Inhalt der Quelle findenBekshaev, A., M. Soskin und M. Vasnetsov. Paraxial Light Beams with Angular Momentum. Nova Science Pub Inc, 2008.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Light angular momentum"
Burkardt, Matthias. „Quark Orbital Angular Momentum“. In Light Cone 2015, 15–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_4.
Der volle Inhalt der QuelleBurkardt, Matthias. „GPDs and Orbital Angular Momentum“. In Light Cone 2016, 21–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65732-5_4.
Der volle Inhalt der QuelleDai, Yanan. „Plasmon Orbital Angular Momentum Generation“. In Imaging Light with Photoelectrons on the Nano-Femto Scale, 79–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52836-2_6.
Der volle Inhalt der QuelleLorcé, Cédric, und Keh-Fei Liu. „Quark and Gluon Orbital Angular Momentum: Where Are We?“ In Light Cone 2015, 9–14. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_3.
Der volle Inhalt der QuelleAllen, Les, und Miles Padgett. „The Orbital Angular Momentum of Light: An Introduction“. In Twisted Photons, 1–12. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635368.ch1.
Der volle Inhalt der QuellePisano, Silvia. „Precise Measurements of DVCS at JLab and Quark Orbital Angular Momentum“. In Light Cone 2015, 353–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_55.
Der volle Inhalt der QuelleBabiker, M., V. E. Lembessis und L. Allen. „Optical Molasses and the Orbital Angular Momentum of Light“. In Coherence and Quantum Optics VII, 367–68. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_57.
Der volle Inhalt der QuelleRamesh, K., und Vidya Pol. „The Study on Twisted Light Communication Using Orbital Angular Momentum“. In Lecture Notes on Data Engineering and Communications Technologies, 453–61. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1002-1_46.
Der volle Inhalt der QuelleNiel, Fabien. „Orbital Angular Momentum of Light: A State of the Art“. In Classical and Quantum Description of Plasma and Radiation in Strong Fields, 193–210. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73547-0_9.
Der volle Inhalt der QuelleBoyd, Robert W., und Miles J. Padgett. „Quantum Mechanical Properties of Light Fields Carrying Orbital Angular Momentum“. In Optics in Our Time, 435–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31903-2_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Light angular momentum"
Rodríguez-Fajardo, Valeria, Thao P. Nguyen, Kiyan S. Hocek, Jacob M. Freedman und Enrique J. Galvez. „Einstein beams carrying orbital angular momentum“. In Complex Light and Optical Forces XVII, herausgegeben von David L. Andrews, Enrique J. Galvez und Halina Rubinsztein-Dunlop. SPIE, 2023. http://dx.doi.org/10.1117/12.2651269.
Der volle Inhalt der QuelleZhou, Hailong, Jianji Dong, Jian Wang, Xinlun Cai, Siyuan Yu und Xinliang Zhang. „Dividing orbital angular momentum of light“. In 2016 15th International Conference on Optical Communications and Networks (ICOCN). IEEE, 2016. http://dx.doi.org/10.1109/icocn.2016.7875871.
Der volle Inhalt der QuelleBordovitsyn, Vladimir A., und Olga A. Konstantinov. „ANGULAR MOMENTUM RADIATION OF SPIN LIGHT“. In Proceedings of the Fourteenth Lomonosov Conference on Elementary Particle Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814329682_0095.
Der volle Inhalt der QuelleAmbrosio, Antonio. „Light structuring through orbital angular momentum“. In Quantum Sensing and Nano Electronics and Photonics XX, herausgegeben von Manijeh Razeghi, Giti A. Khodaparast und Miriam S. Vitiello. SPIE, 2024. http://dx.doi.org/10.1117/12.3012867.
Der volle Inhalt der QuelleSuprano, Alessia, Ilaria Gianani, Taira Giordani, Nicolò Spagnolo, Katja Pinker-Domenig, Uwe Klemm, Dimitris Gorpas et al. „Characterization of the transmission of structured light in scattering media“. In Polarized light and Optical Angular Momentum for biomedical diagnostics, herausgegeben von Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson und Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2583117.
Der volle Inhalt der QuelleStilgoe, Alexander B., Naran Gillies und Halina Rubinsztein-Dunlop. „Vector beam shaping for transverse angular momentum transfer“. In Complex Light and Optical Forces XVII, herausgegeben von David L. Andrews, Enrique J. Galvez und Halina Rubinsztein-Dunlop. SPIE, 2023. http://dx.doi.org/10.1117/12.2657224.
Der volle Inhalt der QuelleWang, Daqian, Ji Qi, Baoru Huang, Elizabeth Noble, Danail Stoyanov, Jun Gao und Daniel S. Elson. „A polarization-based smoke removal method for surgical images“. In Polarized light and Optical Angular Momentum for biomedical diagnostics, herausgegeben von Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson und Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2577250.
Der volle Inhalt der QuelleJacques, Steven L., Ben Urban und Hrebesh M. Subhash. „Polarized light reflectance and the sub-diffuse regime during optical imaging of skin“. In Polarized light and Optical Angular Momentum for biomedical diagnostics, herausgegeben von Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson und Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2578004.
Der volle Inhalt der QuelleSchucht, Philippe, Hee Ryung Lee, Mohammed Hachem Mezouar, Ekkehard Hewer, Andreas Raabe, Michael Murek, Irena Zubak et al. „Wide-field imaging of brain white matter fiber tracts with Mueller polarimetry in backscattering configuration“. In Polarized light and Optical Angular Momentum for biomedical diagnostics, herausgegeben von Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson und Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2577872.
Der volle Inhalt der QuelleGermer, Thomas A. „Depolarization in diffusely scattering media“. In Polarized light and Optical Angular Momentum for biomedical diagnostics, herausgegeben von Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson und Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2577888.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Light angular momentum"
Brodsky, Stanley J. Orbital Angular Momentum on the Light-Front and QCD Observables. Office of Scientific and Technical Information (OSTI), März 2006. http://dx.doi.org/10.2172/877429.
Der volle Inhalt der QuelleMahanta, Monisha K. Experimentation of Fiber-Optic Transmission of Light with Orbital Angular Momentum. Fort Belvoir, VA: Defense Technical Information Center, Mai 2006. http://dx.doi.org/10.21236/ada451409.
Der volle Inhalt der QuelleBrodsky, S. J. Light-cone representation of the spin and orbital angular momentum of relativistic composite systems. Office of Scientific and Technical Information (OSTI), März 2000. http://dx.doi.org/10.2172/753316.
Der volle Inhalt der Quelle