Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Life cycle emission (LCE)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Life cycle emission (LCE)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Life cycle emission (LCE)"
Li, Qiangnian, Tongze Han, Changlin Niu und Ping Liu. „Life Cycle Carbon Emission Analyzing of Rural Residential Energy Efficiency Retrofit-A Case Study of Gansu province“. E3S Web of Conferences 329 (2021): 01063. http://dx.doi.org/10.1051/e3sconf/202132901063.
Der volle Inhalt der QuelleKumar, Ashok, Pardeep Singh, Nishant Raj Kapoor, Chandan Swaroop Meena, Kshitij Jain, Kishor S. Kulkarni und Raffaello Cozzolino. „Ecological Footprint of Residential Buildings in Composite Climate of India—A Case Study“. Sustainability 13, Nr. 21 (28.10.2021): 11949. http://dx.doi.org/10.3390/su132111949.
Der volle Inhalt der QuelleThaipradit, Pipat, Nantamol Limphitakphong, Premrudee Kanchanapiya, Thanapol Tantisattayakul und Orathai Chavalparit. „The Influence of Building Envelop Materials on its Life Cycle Performance: A Case Study of Educational Building in Thailand“. Key Engineering Materials 780 (September 2018): 74–79. http://dx.doi.org/10.4028/www.scientific.net/kem.780.74.
Der volle Inhalt der QuelleSantamaria, Belen Moreno, Fernando del Ama Gonzalo, Matthew Griffin, Benito Lauret Aguirregabiria und Juan A. Hernandez Ramos. „Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities“. Energies 14, Nr. 8 (14.04.2021): 2195. http://dx.doi.org/10.3390/en14082195.
Der volle Inhalt der QuelleMoazzen, Nazanin, Mustafa Erkan Karaguler und Touraj Ashrafian. „Assessment of the Life Cycle Energy Efficiency of a Primary School Building in Turkey“. Applied Mechanics and Materials 887 (Januar 2019): 335–43. http://dx.doi.org/10.4028/www.scientific.net/amm.887.335.
Der volle Inhalt der QuelleShoaib-ul-Hasan, Sayyed, Malvina Roci, Farazee M. A. Asif, Niloufar Salehi und Amir Rashid. „Analyzing Temporal Variability in Inventory Data for Life Cycle Assessment: Implications in the Context of Circular Economy“. Sustainability 13, Nr. 1 (02.01.2021): 344. http://dx.doi.org/10.3390/su13010344.
Der volle Inhalt der QuelleGrenz, Julian, Moritz Ostermann, Karoline Käsewieter, Felipe Cerdas, Thorsten Marten, Christoph Herrmann und Thomas Tröster. „Integrating Prospective LCA in the Development of Automotive Components“. Sustainability 15, Nr. 13 (25.06.2023): 10041. http://dx.doi.org/10.3390/su151310041.
Der volle Inhalt der QuelleTighnavard Balasbaneh, Ali, Abdul Kadir Bin Marsono und Emad Kasra Kermanshahi. „Balancing of life cycle carbon and cost appraisal on alternative wall and roof design verification for residential building“. Construction Innovation 18, Nr. 3 (09.07.2018): 274–300. http://dx.doi.org/10.1108/ci-03-2017-0024.
Der volle Inhalt der QuelleIslam, Hamidul, Muhammed Bhuiyan, Quddus Tushar, Satheeskumar Navaratnam und Guomin Zhang. „Effect of Star Rating Improvement of Residential Buildings on Life Cycle Environmental Impacts and Costs“. Buildings 12, Nr. 10 (04.10.2022): 1605. http://dx.doi.org/10.3390/buildings12101605.
Der volle Inhalt der QuelleBetten, Thomas, Shivenes Shammugam und Roberta Graf. „Adjustment of the Life Cycle Inventory in Life Cycle Assessment for the Flexible Integration into Energy Systems Analysis“. Energies 13, Nr. 17 (27.08.2020): 4437. http://dx.doi.org/10.3390/en13174437.
Der volle Inhalt der QuelleDissertationen zum Thema "Life cycle emission (LCE)"
Andersson, Lucas, und Tim Fjällström. „LCC och LCA-baserad jämförelse mellan batteridriven och bensindriven produkt“. Thesis, Linnéuniversitetet, Institutionen för maskinteknik (MT), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-96203.
Der volle Inhalt der QuelleMany countries are trying to reduce the usage of fossil fuels and instead they are trying to find renewable alternatives. A common way to do this is to go from gasoline engines to electric engines. The purpose of the study is to gain a greater understanding of the products costs and environmental impact during their usage. The study was conducted as a case study at Swepac, Ljungby. The study’s implementation follows parts from LCC, LCA, CELA and the breakeven method in order to achieve the purpose. The environmental impact is measured in carbon dioxide equivalents and a conversion factor is used to convert the emissions to a monetary value that can be used in calculations of costs. The result shows that breakeven between the machines arises after 6.9 years, however, the service life is only 5 years. Both environmental impact, operating and maintenance costs is lower for the electrical option, however, the big difference in purchase price makes it take a long time for a breakeven to occur.
Krbalová, Maria. „Posuzování vlivu na životní prostředí při konstrukci výrobních strojů z pohledu emise vybraných skleníkových plynů“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-256573.
Der volle Inhalt der QuelleUnsbo, Hanna. „Update of the LCA-software WAMPS : Proposing new emission factors and investigating the implications“. Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302402.
Der volle Inhalt der QuelleUnder de senaste decennierna har livscykelanalys (LCA) blivit ett vanligt tillvägagångssätt världen över vid analyser av potentiella miljöeffekter kopplade till avfallshanteringssystem. Dessa system är av komplex natur och inkluderar allt från teknologiska lösningar, miljöpåverkan samt flera intressenter. För att underlätta dessa studier används idag ofta olika LCA-modeller. WAMPS är ett program som är särskilt utvecklad för att bedöma både miljömässiga- och ekonomiska konsekvenser kopplat till avfallshanteringssystem. Under de senaste åren har arbetet med att uppdatera modellen påbörjat eftersom programvaran inte har uppdaterats sedan början av 2000-talet. Syftet med detta examensarbete är att föreslå nya emissionsfaktorer för återvinning och jungfrulig produktion av glas, aluminium, stål, och plast. Utöver detta avser studien att studera hur implementeringen av de nya siffrorna inverkar på resultatet som erhålls i WAMPS. För att uppfylla tesen av detta arbete samlades LCI data in för varje material och utvärderades enligt tre DQI:er (Temporal representativitet, geografisk representativitet och dokumentation). Nya utsläppsfaktorer utvecklades baserat på utvärderingen och genom diskussioner inom projektgruppen. Framförallt för att säkerhetsställa att alla relevanta aktiviteter i de studerade livscyklerna är inkluderade. Konsekvenserna av implementeringen av utsläppsfaktorerna undersöktes genom en jämförelse av resultat som erhölls i WAMPS då de nya samt de tidigare faktorerna nyttjas. Detta gjordes både per ton material samt genom ett enkelt scenario. Utvärderingen av den insamlade LCI datan påvisar att många av dataseten representerar genomsnittlig produktion inom Europa och att datan generellt var insamlad för minst 5 år sedan. Resultatet påvisar att dataseten är väldokumenterad enlig indikatorn som ställts upp i denna studie. Främst användes processer från EcoInvent för att utveckla de nya emissionsfaktorerna. Implementeringen av emissionsfaktorerna i WAMPS resulterade i signifikanta skillnader i potentiell miljöpåverkan per ton material, främst för bildning av fotooxid. För fallet med scenariot indikerade studiens resultat att en betydande förändring av den potentiella miljöbelastningen erhålls när de nya utsläppsfaktorerna implementeras. Dessutom påvisades en minskning av miljöeffekterna för alla kategorier varav eutrofiering visade den största absoluta skillnaden. Slutligen anses de utvecklade emissions faktorerna vara lämpliga utifrån utformningen av denna tes. Dock dras slutsatsen att dessa har flertalet begränsningar som är viktiga att ta i hänsyn ifall dessa implementeras i WAMPS i framtiden. Dessutom anses det vara fastställt att en fortsatt uppdatering kan anses rimlig utifrån det erhållna resultatet.
Dicksen, Jesper. „Skillnaden i koldioxidutsläpp mellan limträ och stål : En studie som jämför två olika stommaterial“. Thesis, Högskolan Dalarna, Institutionen för information och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-38146.
Der volle Inhalt der QuelleToday, life-cycle assessment (LCA) are performed to identify the buildingcomponents that cause large carbon dioxide emissions in the construction industry.The purpose of this study is to use the life-cycle assessment tool One Click LCA tocompare how large carbon dioxide emissions are formed by the materials in aglulam frame, which belongs to an indoor arena compared to the materials in afictitious steel frame, which is dimensioned to withstand the same loads andfunction as the glulam frame. This is done in order to highlight the differencesbetween the carbon dioxide emissions in the product phase (A1-A3) between aglulam frame and a steel frame.A designer has designed the steel frame for comparison. The designer producedthe dimensions and building materials, but the steel frame was not sufficientlyworked out and projected for the comparison to be made directly.In One Click LCA, the quantities and building components for both frames areneeded to be able to make complete life-cycle assessment. By quantities is meantvolumes and weights for the building components. The study initially lackedquantities for some of the building components and part of the purpose wastherefore to produce all quantities for the frames. To get the right amounts in thestudy, two programs were used, Bluebeam and Excel. With these programs, thelength measurements for different building components were taken from drawings.Together with the other information about the building components, the quantitiescould then be produced.In One Click LCA, resources need to be selected. These can be linked to specificbuilding components and contain data on how large carbon dioxide emissions thatbuilding components cause. Based on building components and quantities,resources were then selected in One Click LCA. When resources are selected, theprogram calculates how large carbon dioxide emissions are formed in the productphase (A1-A3) for the building components. With quantities and resources, tworesults could be obtained in the software. The results show that 55 tonnes ofcarbon dioxide are formed by the glulam frame and 779.9 tonnes of carbon dioxideare formed by the steel frame. In the steel frame, it is the trusses that cause themost carbon dioxide emissions and in the glulam frame, the beams in the upperpart of the indoor arena cause the most carbon dioxide emissions.
Cangini, Francesco. „Valutazione della sostenibilità economico-ambientale della sopraelevazione di un edificio residenziale tramite l'applicazione dei metodi LCA e LCC“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Den vollen Inhalt der Quelle findenDu, Guangli. „Life cycle assessment of bridges, model development and case studies“. Doctoral thesis, KTH, Bro- och stålbyggnad, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161196.
Der volle Inhalt der QuelleQC 20150311
Facibeni, Gabriele. „Emissioni da uso dei pesticidi negli studi di Life Cycle Assessment: calcolo dell’inventario“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Den vollen Inhalt der Quelle findenAlmutairi, Badriya L. „Investigating the feasibility and soil-structure integrity of onshore wind turbine systems in Kuwait“. Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/27612.
Der volle Inhalt der QuelleMiliutenko, Sofiia. „Life Cycle Impacts of Road Infrastructure : Assessment of energy use and greenhouse gas emissions“. Licentiate thesis, KTH, Miljöstrategisk analys, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-89885.
Der volle Inhalt der QuelleQC 20120229
Miliutenko, Sofiia. „Consideration of life cycle energy use and greenhouse gas emissions for improved road infrastructure planning“. Doctoral thesis, KTH, Miljöstrategisk analys (fms), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-184163.
Der volle Inhalt der QuelleQC 20160329
Bücher zum Thema "Life cycle emission (LCE)"
Engineers, Society of Automotive, und SAE World Congress (2006 : Detroit, Mich.), Hrsg. Emission: Measurement, testing & modeling. Warrendale, PA: Society of Automotive Engineers, 2006.
Den vollen Inhalt der Quelle findenHorne, Ralph E., Tim Grant und Karli Verghese. Life Cycle Assessment. CSIRO Publishing, 2009. http://dx.doi.org/10.1071/9780643097964.
Der volle Inhalt der QuelleSadiq, Rehan, Kasun Hewage, Rajeev Ruparathna und Hirushie Karunathilake. Life Cycle Thinking for Net-Zero Energy and Emission Transformation. Elsevier Science & Technology Books, 2020.
Den vollen Inhalt der Quelle findenEnvironmental life cycle cost analysis: A review of economic, energy and green house gas emission impacts of asphalt and concrete pavements. Ottawa: National Library of Canada, 2000.
Den vollen Inhalt der Quelle findenPaulson, CAJ. Greenhouse Gas Control Technologies. Herausgegeben von RA Durie, DJ Williams, AY Smith und P. McMullan. CSIRO Publishing, 2001. http://dx.doi.org/10.1071/9780643105027.
Der volle Inhalt der QuelleBuchteile zum Thema "Life cycle emission (LCE)"
Holst, Jens-Christian, Katrin Müller, Florian Ansgar Jaeger und Klaus Heidinger. „City Air Management: LCA-Based Decision Support Model to Improve Air Quality“. In Towards a Sustainable Future - Life Cycle Management, 39–47. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77127-0_4.
Der volle Inhalt der QuelleLange, Nora, David Moosmann, Stefan Majer, Kathleen Meisel, Katja Oehmichen, Stefan Rauh und Daniela Thrän. „Assessment of Greenhouse Gas Emission Reduction from Biogas Supply Chains in Germany in Context of a Newly Implemented Sustainability Certification“. In Sustainable Production, Life Cycle Engineering and Management, 85–101. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29294-1_6.
Der volle Inhalt der QuelleAggarwal, Neeraj K., Naveen Kumar und Mahak Mittal. „Life Cycle Analysis (LCA) in GHG Emission and Techno-economic Analysis (TEA) of Bioethanol Production“. In Green Chemistry and Sustainable Technology, 179–90. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05091-6_14.
Der volle Inhalt der QuelleCerdas, Felipe. „LCE and Electromobility“. In Sustainable Production, Life Cycle Engineering and Management, 11–55. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82934-6_2.
Der volle Inhalt der QuelleKeller, Heiko, Horst Fehrenbach, Nils Rettenmaier und Marie Hemmen. „Extending LCA Methodology for Assessing Liquid Biofuels by Phosphate Resource Depletion and Attributional Land Use/Land Use Change“. In Towards a Sustainable Future - Life Cycle Management, 121–31. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77127-0_11.
Der volle Inhalt der QuelleCerdas, Felipe. „State of Research—Review on LCE Modelling and Assessment Approaches for Electromobility“. In Sustainable Production, Life Cycle Engineering and Management, 57–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82934-6_3.
Der volle Inhalt der QuelleAlkhawaldeh, Ayah, Nour Betoush, Ansam Sawalha, Mohammad Alhassan und Khairedin Abdalla. „Life Cycle Assessment and Sustainability Characteristics of Built Environment Systems“. In Lecture Notes in Civil Engineering, 523–31. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57800-7_48.
Der volle Inhalt der QuelleCerdas, Felipe. „Exemplary Application: Analysis of Variability in the LCE of Batteries for Electric Vehicles“. In Sustainable Production, Life Cycle Engineering and Management, 129–61. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82934-6_5.
Der volle Inhalt der QuelleTippett, Arron Wilde. „Life Cycle Assessment of Fishing and Aquaculture Rope Recycling“. In Marine Plastics: Innovative Solutions to Tackling Waste, 121–34. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-31058-4_7.
Der volle Inhalt der QuelleDalla Valle, Anna. „Life Cycle Assessment at the Early Stage of Building Design“. In The Urban Book Series, 461–70. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29515-7_42.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Life cycle emission (LCE)"
Wen, Ching-Mei, Charles Foster und Marianthi Ierapetritou. „Exploring Net-Zero Greenhouse Gas Emission Routes for Bio-Production of Triacetic Acid Lactone: An Evaluation through Techno-Economic Analysis and Life Cycle Assessment“. In Foundations of Computer-Aided Process Design, 933–40. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.182968.
Der volle Inhalt der QuelleLeon, David, David Bolonio, Isabel Amez, Roberto Paredes und Blanca Castells. „LIFE-CYCLE ANALYSIS OF FIREWORKS: ENVIRONMENTAL IMPACT AND IMPROVEMENT OPPORTUNITIES“. In 24th SGEM International Multidisciplinary Scientific GeoConference 24, 139–48. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024/4.1/s17.18.
Der volle Inhalt der QuelleLokesh, Kadambari, Atma Prakash, Vishal Sethi, Eric Goodger und Pericles Pilidis. „Assessment of Life Cycle Emissions of Bio-SPKs for Jet Engines“. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94238.
Der volle Inhalt der QuelleKalluri, Sumanth, Pasi Lautala und Robert Handler. „Toward Integrated Life Cycle Assessment and Life Cycle Cost Analysis for Road and Multimodal Transportation Alternatives: A Case Study of the Highland Copper Project“. In 2016 Joint Rail Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/jrc2016-5841.
Der volle Inhalt der QuelleDeru, Michael. „Establishing Standard Source Energy and Emission Factors for Energy Use in Buildings“. In ASME 2007 Energy Sustainability Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/es2007-36105.
Der volle Inhalt der QuelleAl‐Gburi, Majid, Jaime Gonzalez‐Libreros, Gabriel Sas und Martin Nilsson. „Quantifying the Environmental Impact of Railway Bridges Using Life Cycle Assessment: A Case Study“. In IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.1796.
Der volle Inhalt der QuelleKominiarz, Mathis, und Zeina Al-Nabulsi. „Life-cycle analysis of the Colne Valley Viaduct and assessment of optimised solutions“. In IABSE Symposium, Manchester 2024: Construction’s Role for a World in Emergency. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2024. http://dx.doi.org/10.2749/manchester.2024.0451.
Der volle Inhalt der QuelleFu, Yang, Buyu Wang und Shijin Shuai. „Life-cycle Analysis of Methanol Production from Coke Oven Gas in China“. In Energy & Propulsion Conference & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-1646.
Der volle Inhalt der QuelleMorita, Yasutomo, Kenji Shimizu, Hirokazu Kato, Naoki Shibahara und Toshihiro Yamasaki. „A Study for the Measurement of Environmental Impact Resulting From Railway Construction“. In 2011 Joint Rail Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/jrc2011-56006.
Der volle Inhalt der QuelleLéonard, Angélique, und S. Gerbinet. „Using Life Cycle Assessment methodology to minimize the environmental impact of dryers“. In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7851.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Life cycle emission (LCE)"
Koroma, Michael Samsu, Xun Xu und Abdulrahman Alwosheel. Life Cycle Assessment of Road Freight Decarbonization in Saudi Arabia. King Abdullah Petroleum Studies and Research Center, Dezember 2024. https://doi.org/10.30573/ks--2024-dp63.
Der volle Inhalt der QuelleSharma, Bhavna, Bryan Swanton, Joseph Kuo, Kimny Sysawang, Sachi Yagyu, Aneesa Motala, Danica Tolentino, Najmedin Meshkati und Susanne Hempel. Use of Life Cycle Assessment in the Healthcare Industry: Environmental Impacts and Emissions Associated With Products, Processes, and Waste. Agency for Healthcare Research and Quality (AHRQ), November 2024. http://dx.doi.org/10.23970/ahrqepctb48.
Der volle Inhalt der QuelleShen, Bo, und Zhenning LI. Perform Life Cycle Energy and GHG Emission Analysis, Select Candidate Refrigerant(s). Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1819592.
Der volle Inhalt der QuelleGathorne-Hardy, Alfred. A Life Cycle Assessment (LCA) of Greenhouse Gas Emissions from SRI and Flooded Rice Production in SE India. Taiwan Water Conservancy Journal, 2013. http://dx.doi.org/10.35648/20.500.12413/11781/ii250.
Der volle Inhalt der QuelleAl-Qadi, Imad, Hasan Ozer, Mouna Krami Senhaji, Qingwen Zhou, Rebekah Yang, Seunggu Kang, Marshall Thompson et al. A Life-Cycle Methodology for Energy Use by In-Place Pavement Recycling Techniques. Illinois Center for Transportation, Oktober 2020. http://dx.doi.org/10.36501/0197-9191/20-018.
Der volle Inhalt der QuelleLinan, Dun. Research on carbon emission of urban residents’ three types of dining based on the whole life cycle. Envirarxiv, April 2022. http://dx.doi.org/10.55800/envirarxiv276.
Der volle Inhalt der QuelleAlwosheel, Abdulrahman, und Michael Samsu Koroma. Environmental Performance of Passenger Cars in the KSA: Comparison of Different Technologies via a Life Cycle Assessment Approach. King Abdullah Petroleum Studies and Research Center, Dezember 2024. https://doi.org/10.30573/ks--2024-dp69.
Der volle Inhalt der QuelleKester, Josco, Ji Liu und Ashish Binani. Carbon Footprint of Floating PV Systems. International Energy Agency Photovoltaic Power Systems Programme, 2024. http://dx.doi.org/10.69766/jgaz9626.
Der volle Inhalt der QuelleFact Sheet: Environmental Life Cycle Assessment of Electricity from PV Systems. IEA Photovoltaic Power Systems Programme (PVPS), 2024. http://dx.doi.org/10.69766/algs2169.
Der volle Inhalt der Quelle