Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lieb-Robinson bound“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lieb-Robinson bound" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lieb-Robinson bound"
Matsuta, Takuro, Tohru Koma und Shu Nakamura. „Improving the Lieb–Robinson Bound for Long-Range Interactions“. Annales Henri Poincaré 18, Nr. 2 (20.10.2016): 519–28. http://dx.doi.org/10.1007/s00023-016-0526-1.
Der volle Inhalt der QuelleWoods, M. P., und M. B. Plenio. „Dynamical error bounds for continuum discretisation via Gauss quadrature rules—A Lieb-Robinson bound approach“. Journal of Mathematical Physics 57, Nr. 2 (Februar 2016): 022105. http://dx.doi.org/10.1063/1.4940436.
Der volle Inhalt der QuelleMahoney, Brendan J., und Craig S. Lent. „The Value of the Early-Time Lieb-Robinson Correlation Function for Qubit Arrays“. Symmetry 14, Nr. 11 (26.10.2022): 2253. http://dx.doi.org/10.3390/sym14112253.
Der volle Inhalt der QuelleStrasberg, Philipp, Kavan Modi und Michalis Skotiniotis. „How long does it take to implement a projective measurement?“ European Journal of Physics 43, Nr. 3 (28.03.2022): 035404. http://dx.doi.org/10.1088/1361-6404/ac5a7a.
Der volle Inhalt der QuelleMoosavian, Ali Hamed, Seyed Sajad Kahani und Salman Beigi. „Limits of Short-Time Evolution of Local Hamiltonians“. Quantum 6 (27.06.2022): 744. http://dx.doi.org/10.22331/q-2022-06-27-744.
Der volle Inhalt der QuelleVershynina, Anna, und Elliott Lieb. „Lieb-Robinson bounds“. Scholarpedia 8, Nr. 9 (2013): 31267. http://dx.doi.org/10.4249/scholarpedia.31267.
Der volle Inhalt der QuelleDoyon, Benjamin. „Hydrodynamic Projections and the Emergence of Linearised Euler Equations in One-Dimensional Isolated Systems“. Communications in Mathematical Physics 391, Nr. 1 (27.01.2022): 293–356. http://dx.doi.org/10.1007/s00220-022-04310-3.
Der volle Inhalt der QuelleIslambekov, Umar, Robert Sims und Gerald Teschl. „Lieb–Robinson Bounds for the Toda Lattice“. Journal of Statistical Physics 148, Nr. 3 (August 2012): 440–79. http://dx.doi.org/10.1007/s10955-012-0554-2.
Der volle Inhalt der QuelleNACHTERGAELE, BRUNO, BENJAMIN SCHLEIN, ROBERT SIMS, SHANNON STARR und VALENTIN ZAGREBNOV. „ON THE EXISTENCE OF THE DYNAMICS FOR ANHARMONIC QUANTUM OSCILLATOR SYSTEMS“. Reviews in Mathematical Physics 22, Nr. 02 (März 2010): 207–31. http://dx.doi.org/10.1142/s0129055x1000393x.
Der volle Inhalt der QuelleNachtergaele, Bruno, und Robert Sims. „Lieb-Robinson Bounds and the Exponential Clustering Theorem“. Communications in Mathematical Physics 265, Nr. 1 (22.03.2006): 119–30. http://dx.doi.org/10.1007/s00220-006-1556-1.
Der volle Inhalt der QuelleDissertationen zum Thema "Lieb-Robinson bound"
Islambekov, Umar. „Lieb-Robinson Bounds for the Toda Lattice“. Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/294026.
Der volle Inhalt der QuelleBraida, Arthur. „Analog Quantum Computing for NP-Hard Combinatorial Graph Problems“. Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1017.
Der volle Inhalt der QuelleThe main objective of this thesis is to provide theoretical insight into the computational complexity of continuous-time quantum computing (QA and AQC), from understanding the physical phenomenon (AC) that leads to AQC failure to proving short constant-time QA efficiency. To achieve this goal, we use different analytical tools borrowed from theoretical physics like perturbative analysis of quantum systems and the Lieb-Robinson bound on the velocity of correlation in quantum systems. Graph manipulation and spectral graph theory are necessary to derive results on a specific class of graph. We also introduced a new parametrized version of the standard QA to tighten the analysis. First, we want to obtain a mathematical definition of an AC to be easier to grasp when studying a specific class of graph on which we want to solve the Maximum Cut problem. We support our new definition with a proven theorem that links it to exponentially small minimum gap and numerical evidence is brought to justify its more general nature compared to the previous one. With a perturbative analysis, we manage to show that on bipartite graphs, exponentially closing gap can arise if the graph is irregular enough. Our new definition of AC allows us to question the efficiency of AQC to solve it despite the exponentially long runtime the adiabatic theorem imposes to guarantee the optimal solution. The second axis is dedicated to the performance of QA at short constant times. Even though QA is inherently non-local, the LR bound allows us to approximate it with a local evolution. A first approach is used to develop the method and to show the non-triviality of the result, i.e. above random guess. Then we define a notion of local analysis by expressing the approximation ratio with only knowledge of the local structure. A tight and adaptive LR bound is developed allowing us to find a numerical value outperforming quantum and classical (strictly) local algorithms. All this research work has been pursued between Eviden QuantumLab team and the Graphes, Algorithmes et Modèles de Calcul (GAMoC) team at the Laboratoire d'Informatique Fondamentale d'Orléans (LIFO). The numerical work has been implemented using Julia programming Language as well as Python with the QAPTIVA software of Eviden to efficiently simulate the Schrödinger equation
Bücher zum Thema "Lieb-Robinson bound"
Bru, J. B., und W. de Siqueira Pedra. Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45784-0.
Der volle Inhalt der QuelleLieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer, 2016.
Den vollen Inhalt der Quelle findenBru, J. B., und W. de Siqueira Pedra. Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer, 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Lieb-Robinson bound"
Naaijkens, Pieter. „Lieb-Robinson Bounds“. In Quantum Spin Systems on Infinite Lattices, 109–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51458-1_4.
Der volle Inhalt der QuelleNaaijkens, Pieter. „Applications of Lieb-Robinson Bounds“. In Quantum Spin Systems on Infinite Lattices, 151–71. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51458-1_6.
Der volle Inhalt der QuelleBru, J. B., und W. de Siqueira Pedra. „Lieb–Robinson Bounds for Multi–commutators“. In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 31–61. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_4.
Der volle Inhalt der QuelleBru, J. B., und W. de Siqueira Pedra. „Lieb–Robinson Bounds for Non-autonomous Dynamics“. In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 63–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_5.
Der volle Inhalt der QuelleBru, J. B., und W. de Siqueira Pedra. „Introduction“. In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 1–4. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_1.
Der volle Inhalt der QuelleBru, J. B., und W. de Siqueira Pedra. „Algebraic Quantum Mechanics“. In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 5–15. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_2.
Der volle Inhalt der QuelleBru, J. B., und W. de Siqueira Pedra. „Algebraic Setting for Interacting Fermions on the Lattice“. In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 17–30. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_3.
Der volle Inhalt der QuelleBru, J. B., und W. de Siqueira Pedra. „Applications to Conductivity Measures“. In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 89–101. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_6.
Der volle Inhalt der QuelleKliesch, Martin, Christian Gogolin und Jens Eisert. „Lieb-Robinson Bounds and the Simulation of Time-Evolution of Local Observables in Lattice Systems“. In Many-Electron Approaches in Physics, Chemistry and Mathematics, 301–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06379-9_17.
Der volle Inhalt der QuelleCheneau, Marc. „Experimental tests of Lieb–Robinson bounds“. In The Physics and Mathematics of Elliott Lieb, 225–45. EMS Press, 2022. http://dx.doi.org/10.4171/90-1/10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lieb-Robinson bound"
NACHTERGAELE, BRUNO. „LIEB–ROBINSON BOUNDS AND THE EXISTENCE OF INFINITE SYSTEM DYNAMICS“. In XVIth International Congress on Mathematical Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814304634_0028.
Der volle Inhalt der QuelleSIMS, ROBERT. „LIEB-ROBINSON BOUNDS AND QUASI-LOCALITY FOR THE DYNAMICS OF MANY-BODY QUANTUM SYSTEMS“. In Proceedings of the QMath11 Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814350365_0007.
Der volle Inhalt der Quelle