Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lie Symmetry group of SDE“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lie Symmetry group of SDE" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lie Symmetry group of SDE"
Muniz, Michelle, Matthias Ehrhardt und Michael Günther. „Approximating Correlation Matrices Using Stochastic Lie Group Methods“. Mathematics 9, Nr. 1 (04.01.2021): 94. http://dx.doi.org/10.3390/math9010094.
Der volle Inhalt der QuelleYU, JUN, und HANWEI HU. „FINITE SYMMETRY GROUP AND COHERENT SOLITON SOLUTIONS FOR THE BROER–KAUP–KUPERSHMIDT SYSTEM“. International Journal of Bifurcation and Chaos 23, Nr. 09 (September 2013): 1350156. http://dx.doi.org/10.1142/s0218127413501563.
Der volle Inhalt der QuelleChen, Yong, und Xiaorui Hu. „Lie Symmetry Group of the Nonisospectral Kadomtsev-Petviashvili Equation“. Zeitschrift für Naturforschung A 64, Nr. 1-2 (01.02.2009): 8–14. http://dx.doi.org/10.1515/zna-2009-1-202.
Der volle Inhalt der QuelleKötz, H. „A Technique to Classify the Similarity Solutions of Nonlinear Partial (Integro-)Differential Equations. I. Optimal Systems of Solvable Lie Subalgebras“. Zeitschrift für Naturforschung A 47, Nr. 11 (01.11.1992): 1161–74. http://dx.doi.org/10.1515/zna-1992-1114.
Der volle Inhalt der QuelleSHIRKOV, DMITRIJ V. „RENORMALIZATION GROUP SYMMETRY AND SOPHUS LIE GROUP ANALYSIS“. International Journal of Modern Physics C 06, Nr. 04 (August 1995): 503–12. http://dx.doi.org/10.1142/s0129183195000356.
Der volle Inhalt der QuelleNadjafikhah, Mehdi, und Seyed-Reza Hejazi. „SYMMETRY ANALYSIS OF TELEGRAPH EQUATION“. Asian-European Journal of Mathematics 04, Nr. 01 (März 2011): 117–26. http://dx.doi.org/10.1142/s1793557111000101.
Der volle Inhalt der QuelleNadjafikhah, Mehdi, und Mehdi Jafari. „Some General New Einstein Walker Manifolds“. Advances in Mathematical Physics 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/591852.
Der volle Inhalt der QuelleAlmutiben, Nouf, Ryad Ghanam, G. Thompson und Edward L. Boone. „Symmetry analysis of the canonical connection on Lie groups: six-dimensional case with abelian nilradical and one-dimensional center“. AIMS Mathematics 9, Nr. 6 (2024): 14504–24. http://dx.doi.org/10.3934/math.2024705.
Der volle Inhalt der QuelleJohnpillai, Andrew G., Abdul H. Kara und Anjan Biswas. „Exact Group Invariant Solutions and Conservation Laws of the Complex Modified Korteweg–de Vries Equation“. Zeitschrift für Naturforschung A 68, Nr. 8-9 (01.09.2013): 510–14. http://dx.doi.org/10.5560/zna.2013-0027.
Der volle Inhalt der QuelleMehdi Nadjafikhah und Omid Chekini. „Invariant solutions of Barlett and Whitaker’s equations“. Malaya Journal of Matematik 2, Nr. 02 (01.04.2014): 103–7. http://dx.doi.org/10.26637/mjm202/002.
Der volle Inhalt der QuelleDissertationen zum Thema "Lie Symmetry group of SDE"
Ouknine, Anas. „Μοdèles affines généralisées et symétries d'équatiοns aux dérivés partielles“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR085.
Der volle Inhalt der QuelleThis thesis is dedicated to studying the Lie symmetries of a particular class of partialdifferential equations (PDEs), known as the backward Kolmogorov equation. This equa-tion plays a crucial role in financial modeling, particularly in relation to the Longstaff-Schwartz model, which is widely used for pricing options and derivatives.In a broader context, our study focuses on analyzing the Lie symmetries of thebackward Kolmogorov equation by introducing a nonlinear term. This generalization issignificant, as the modified equation is linked to a forward backward stochastic differ-ential equation (FBSDE) through the generalized (nonlinear) Feynman-Kac formula.We also examine the symmetries of this stochastic equation and how the symmetriesof the PDE are connected to those of the BSDE.Finally, we propose a recalculation of the symmetries of the BSDE and FBSDE,adopting a new approach. This approach is distinguished by the fact that the symme-try group acting on time itself depends also on the process Y , which is the solutionof the BSDE. This dependence opens up new perspectives on the interaction betweentemporal symmetries and the solutions of the equations
Nikolaishvili, George. „Investigation of the Equations Modelling Chemical Waves Using Lie Group Analysis“. Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3996.
Der volle Inhalt der QuelleWiseman, Robin D. „The Jahn-Teller effect in icosahedral symmetry : unexpected lie group symmetries and their exploitation“. Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299385.
Der volle Inhalt der QuelleLindman, Hornlund Josef. „Sigma-models and Lie group symmetries in theories of gravity“. Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209911.
Der volle Inhalt der QuelleDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Tempesta, Patricia. „Simmetries in binary differential equations“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11072017-170308/.
Der volle Inhalt der QuelleO objetivo desta tese é introduzir o estudo sistemático de simetrias em equações diferenciais binárias (EDBs). Neste trabalho formalizamos o conceito de EDB simétrica sobre a ação de um grupo de Lie compacto. Um dos principais resultados é uma fórmula que relaciona o efeito geométrico e algébrico das simetrias presentes no problema. Utilizando ferramentas da teoria invariante e de representação para grupos compactos deduzimos as formas gerais para EDBs equivariantes. Um estudo sobre o comportamento das retas invariantes na configuração de EDBs com coeficientes homogêneos de grau n é feito com ênfase nos casos de grau 0 e 1, ainda no caso de grau 1 são apresentadas suas formas normais. Simetrias de 1-formas lineares são também estudadas e relacionadas com as simetrias dos seus campos tangente e ortogonal.
Correa, Diego Paolo Ferruzzo. „Symmetric bifurcation analysis of synchronous states of time-delay oscillators networks“. Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-29122014-180651/.
Der volle Inhalt der QuelleNos últimos anos, tem havido um crescente interesse em estudar redes de osciladores acopladas com retardo de tempo uma vez que estes ocorrem em muitas aplicações da vida real. Em muitos casos, simetria e padrões podem surgir nessas redes; em consequência, uma parte do sistema pode repetir-se, e as propriedades deste subsistema simétrico representam a dinâmica da rede toda. Nesta tese é feita uma análise de uma rede de N nós de segunda ordem totalmente conectada com atraso de tempo. Este estudo é realizado utilizando grupos de simetria. É mostrada a existência de múltiplos valores próprios forçados por simetria, bem como a possibilidade de desacoplamento da linearização no equilíbrio, em representações irredutíveis. É também provada a existência de bifurcações de estado estacionário e Hopf em cada representação irredutível. São usados três modelos diferentes para analisar a dinâmica da rede: o modelo de fase completa, o modelo de fase, e o modelo de diferença de fase. É também determinado um conjunto finito de frequências ω, que pode corresponder a bifurcações de Hopf em cada caso, para valores críticos do atraso. Apesar de restringir a nossa atenção para nós de segunda ordem, os resultados podem ser estendido para redes de ordem superior, desde que o tempo de atraso nas conexões entre nós permanece igual.
Al, Sayed Nazir. „Modèles LES invariants par groupes de symétries en écoulements turbulents anisothermes“. Phd thesis, Université de La Rochelle, 2011. http://tel.archives-ouvertes.fr/tel-00605655.
Der volle Inhalt der QuelleAltafini, Claudio. „Geometric control methods for nonlinear systems and robotic applications“. Doctoral thesis, Stockholm : Tekniska högsk, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3151.
Der volle Inhalt der QuelleJohn, Tyson. „Set Stabilization for Systems with Lie Group Symmetry“. Thesis, 2010. http://hdl.handle.net/1807/25642.
Der volle Inhalt der QuelleMamboundou, Hermane Mambili. „Lie group analysis of equations arising in non-Newtonian fluids“. Thesis, 2009. http://hdl.handle.net/10539/6879.
Der volle Inhalt der QuelleBücher zum Thema "Lie Symmetry group of SDE"
Robinson, Matthew B. Symmetry and the standard model: Mathematics and particle physics. New York: Springer, 2011.
Den vollen Inhalt der Quelle findenOrtaçgil, Ercüment H. The Symmetry Group. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198821656.003.0016.
Der volle Inhalt der QuelleVergados, J. D. Group and Representation Theory. World Scientific Publishing Co Pte Ltd, 2016.
Den vollen Inhalt der Quelle findenO'Raifeartaigh, L. Group Structure of Gauge Theories. Cambridge University Press, 2012.
Den vollen Inhalt der Quelle findenO'Raifeartaigh, L. Group Structure of Gauge Theories. Cambridge University Press, 2011.
Den vollen Inhalt der Quelle findenWallach, Nolan R., und Roe Goodman. Symmetry, Representations, and Invariants. Springer, 2010.
Den vollen Inhalt der Quelle findenSato, Ryuzo, und Rama V. Ramachandran. Symmetry and Economic Invariance. Springer London, Limited, 2013.
Den vollen Inhalt der Quelle findenSato, Ryuzo, und Rama V. Ramachandran. Symmetry and Economic Invariance. Springer Japan, 2016.
Den vollen Inhalt der Quelle findenSato, Ryuzo, und Rama V. Ramachandran. Symmetry and Economic Invariance. Springer, 2013.
Den vollen Inhalt der Quelle findenSato, Ryuzo, und Rama V. Ramachandran. Symmetry and Economic Invariance. T Kobayashi, 2013.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Lie Symmetry group of SDE"
Baldeaux, Jan, und Eckhard Platen. „Lie Symmetry Group Methods“. In Functionals of Multidimensional Diffusions with Applications to Finance, 101–40. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00747-2_4.
Der volle Inhalt der QuelleSinger, Stephanie Frank. „Symmetries are Lie Group Actions“. In Symmetry in Mechanics, 83–100. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-0189-2_6.
Der volle Inhalt der QuelleIbragimov, N. H. „Symbolic Software for Lie Symmetry Analysis“. In CRC Handbook of Lie Group Analysis of Differential Equations, Volume III, 367–414. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003575221-16.
Der volle Inhalt der QuelleYahalom, Asher. „A New Diffeomorphism Symmetry Group of Magnetohydrodynamics“. In Lie Theory and Its Applications in Physics, 461–68. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54270-4_33.
Der volle Inhalt der QuelleVassilev, Vassil M., Petar A. Djondjorov und Ivaïlo M. Mladenov. „Lie Group Analysis of the Willmore and Membrane Shape Equations“. In Similarity and Symmetry Methods, 365–76. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08296-7_7.
Der volle Inhalt der QuelleIbragimov, N. H., W. F. Ames, R. L. Anderson, V. A. Dorodnitsyn, E. V. Ferapontov, R. K. Gazizov, N. H. Ibragimov und S. R. Svirshchevskii. „Symmetry of Finite-Difference Equations“. In CRC Handbook of Lie Group Analysis of Differential Equations, Volume I, 365–403. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003419808-22.
Der volle Inhalt der QuelleIbragimov, N. H., W. F. Ames, R. L. Anderson, V. A. Dorodnitsyn, E. V. Ferapontov, R. K. Gazizov, N. H. Ibragimov und S. R. Svirshchevskii. „Nonlocal Symmetry Generators via Bäcklund Transformations“. In CRC Handbook of Lie Group Analysis of Differential Equations, Volume I, 68–73. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003419808-10.
Der volle Inhalt der QuelleIbragimov, N. H. „Approximate Transformation Groups and Deformations of Symmetry Lie Algebras“. In CRC Handbook of Lie Group Analysis of Differential Equations, Volume III, 31–68. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003575221-3.
Der volle Inhalt der QuelleIbragimov, N. H. „Calculation of Symmetry Groups for Integro-Differential Equations“. In CRC Handbook of Lie Group Analysis of Differential Equations, Volume III, 139–46. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003575221-6.
Der volle Inhalt der QuelleMitropolsky, Yu A., und A. K. Lopatin. „Asymptotic Decomposition of Differential Systems with Small Parameter in the Representation Space of Finite-dimensional Lie Group“. In Nonlinear Mechanics, Groups and Symmetry, 219–58. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8535-4_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lie Symmetry group of SDE"
Pulov, Vladimir I., Ivan M. Uzunov, Edy J. Chacarov und Valentin L. Lyutskanov. „Lie group symmetry classification of solutions to coupled nonlinear Schrodinger equations“. In SPIE Proceedings, herausgegeben von Peter A. Atanasov, Tanja N. Dreischuh, Sanka V. Gateva und Lubomir M. Kovachev. SPIE, 2007. http://dx.doi.org/10.1117/12.726994.
Der volle Inhalt der QuelleLindgren, B., J. Osterlund und A. Johansson. „Evaluation of scaling laws derived from lie group symmetry methods in turbulent boundary layers“. In 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-1103.
Der volle Inhalt der QuelleYu, Jingjun, Shouzhong Li, Shusheng Bi und Guanghua Zong. „Symmetry Design in Flexure Systems Using Kinematic Principles“. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12385.
Der volle Inhalt der QuelleChangizi, M. Amin, Ali Abolfathi und Ion Stiharu. „MEMS Wind Speed Sensor: Large Deflection of Curved Micro-Cantilever Beam Under Uniform Horizontal Force“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50560.
Der volle Inhalt der Quelle