Auswahl der wissenschaftlichen Literatur zum Thema „Li3PS4“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Li3PS4" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Li3PS4"

1

Takada, Kazunori, Minoru Osada, Narumi Ohta, Taro Inada, Akihisa Kajiyama, Hideki Sasaki, Shigeo Kondo, Mamoru Watanabe und Takayoshi Sasaki. „Lithium ion conductive oxysulfide, Li3PO4–Li3PS4“. Solid State Ionics 176, Nr. 31-34 (Oktober 2005): 2355–59. http://dx.doi.org/10.1016/j.ssi.2005.03.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhang, Nan, Lie Wang, Qingyu Diao, Kongying Zhu, Huan Li, Chuanwei Li, Xingjiang Liu und Qiang Xu. „Mechanistic Insight into La2O3 Dopants with High Chemical Stability on Li3PS4 Sulfide Electrolyte for Lithium Metal Batteries“. Journal of The Electrochemical Society 169, Nr. 2 (01.02.2022): 020544. http://dx.doi.org/10.1149/1945-7111/ac51fb.

Der volle Inhalt der Quelle
Annotation:
Unlike the unstable liquid-state organic electrolyte at high temperatures, the solid-state electrolytes with high safety have attracted a broad prospect for the development of all-solid-state lithium metal battery (ASSLMB). Among the solid electrolytes, the sulfide-based electrolyte with low grain boundary resistances is one of the most practical choices due to its high lithium-ionic conductivity. The introduction of non-conducting oxide fillers into sulfide matrix is an effective way to increase their ionic conductivities and interfacial stabilities with the electrodes of battery simultaneously. Unfortunately, the acting mechanism of non-conducting oxide dopants with high chemical stability on the sulfide electrolyte has not been elucidated clearly. In this work, the rare-earth oxide La2O3 with high chemical stability was selected as a doping component of Li3PS4 sulfide electrolyte for the first time. The experimental results show that a certain amount of La2O3 can not only increase the ionic conductivity of Li3PS4 electrolyte, but also enhance their interfacial stability with the electrodes effectively. The XPS analytical results reveal the enhanced stability of Li3PS4 electrolyte with La2O3 doping due to the formation of SEI film on the lithium anode. Both the static and dynamic simulations illustrate that La2O3 particles inside the Li3PS4 electrolyte could facilitate the migration of Li+ ion by way of the “space-charge effect.”
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mirmira, Priyadarshini, Jin Zheng, Peiyuan Ma und Chibueze V. Amanchukwu. „Importance of multimodal characterization and influence of residual Li2S impurity in amorphous Li3PS4 inorganic electrolytes“. Journal of Materials Chemistry A 9, Nr. 35 (2021): 19637–48. http://dx.doi.org/10.1039/d1ta02754a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Otoyama, Misae, Kentaro Kuratani und Hironori Kobayashi. „Mechanochemical synthesis of air-stable hexagonal Li4SnS4-based solid electrolytes containing LiI and Li3PS4“. RSC Advances 11, Nr. 61 (2021): 38880–88. http://dx.doi.org/10.1039/d1ra06466e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Phuc, Nguyen H. H., Takaki Maeda, Tokoharu Yamamoto, Hiroyuki Muto und Atsunori Matsuda. „Preparation of Li3PS4–Li3PO4 Solid Electrolytes by Liquid-Phase Shaking for All-Solid-State Batteries“. Electronic Materials 2, Nr. 1 (12.03.2021): 39–48. http://dx.doi.org/10.3390/electronicmat2010004.

Der volle Inhalt der Quelle
Annotation:
A solid solution of a 100Li3PS4·xLi3PO4 solid electrolyte was easily prepared by liquid-phase synthesis. Instead of the conventional solid-state synthesis methods, ethyl propionate was used as the reaction medium. The initial stage of the reaction among Li2S, P2S5 and Li3PO4 was proved by ultraviolet-visible spectroscopy. The powder X-ray diffraction (XRD) results showed that the solid solution was formed up to x = 6. At x = 20, XRD peaks of Li3PO4 were detected in the prepared sample after heat treatment at 170 °C. However, the samples obtained at room temperature showed no evidence of Li3PO4 remaining for x = 20. Solid phosphorus-31 magic angle spinning nuclear magnetic resonance spectroscopy results proved the formation of a POS33− unit in the sample with x = 6. Improvements of ionic conductivity at room temperature and activation energy were obtained with the formation of the solid solution. The sample with x = 6 exhibited a better stability against Li metal than that with x = 0. The all-solid-state half-cell employing the sample with x = 6 at the positive electrode exhibited a better charge–discharge capacity than that employing the sample with x = 0.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yamamoto, Kentaro, Xiaoyu Liu, Jaehee Park, Toshiki Watanabe, Tsuyoshi Takami, Atsushi Sakuda, Akitoshi Hayashi, Masahiro Tastumisago und Yoshiharu Uchimoto. „Lithium Dendrite Formation inside Li3PS4 Solid Electrolyte Observed Via Multimodal/Multiscale Operando X-Ray Computed Tomography“. ECS Meeting Abstracts MA2023-02, Nr. 4 (22.12.2023): 739. http://dx.doi.org/10.1149/ma2023-024739mtgabs.

Der volle Inhalt der Quelle
Annotation:
Sulfide-based all-solid-state batteries using a lithium metal anode are expected to be next-generation batteries due to their extremely high energy density. In order to use the lithium metal as the anode, suppressing dendrite of lithium metal during charge/discharge processes is essentially important. It has been reported that lithium dendrite formation occurs not from the lithium/sulfide solid electrolyte interface, but in the sulfide solid electrolyte, isolated from the interface1, 2. The formation of lithium dendrite within the sulfide solid electrolyte is caused by electron conduction in the sulfide solid electrolyte and at the sulfide solid electrolyte/void interface3. However, fundamental information on the mechanism of lithium dendrite formation in a sulfide solid electrolyte caused by its electron conduction is lacking. In this study, the three-dimensional morphological changes of the lithium dendrite in Li3PS4, which is a typical sulfide solid electrolyte, were observed directly using multimodal/multiscale operando computed tomography (CT) under an applied pressure. Li/Li3PS4/Li cells were constructed in a diameter of 10 mm and 1 mm for the critical current density measurements and X-ray CT measurements by using SPring-8 BL20XU respectively. X-ray CT images for behavior change with the electrochemical operation were collected in micro and nano scales at 25 °C every 30 mins. After a series of data processing steps, these images were converted to cross-sectional slices that were then stacked together to render a 3D reconstruction of the cell. The 3D imaging data coupled with precise species segmentation show that the lithium metal deposition start point is spatially separated from the lithium metal anode. The gradient in thickness of a lithium filament with repeated charging, widening the plating-susceptible region horizontally in the process and eventually led to cell failure. The lithium nucleation initiates along the pre-existing voids where local electronic conductivities are high during the plating. The deposition then widens from the nucleation across the electrolyte horizontally. Accompanied with streak fracture widening through the Li3PS4, does a Li/Li3PS4/Li cell finally short circuit. By combining the multimodal/multiscale operando X-ray computed tomography with X-ray absorption spectroscopy and electrochemical impedance spectroscopy measurements, we revealed that the electronic conduction of reductive decomposition products and the solid electrolyte/void interface cause the lithium deposition within the Li3PS4. These results suggests that the suppression of reductive decomposition and sulfide solid-state electrolytes with low electronic conductivity plays significant roles in suppressing the growth of lithium dendrites in the solid-state electrolyte layer. References: [1] Q. Tu, G. Ceder, et al., Matter. 4, 3248–3268 (2021). [2] F. Han, C. Wang, et al., Nat . Energy. 4, 187–196 (2019). [3] M. Sun, J. Lu, et al., ACS Energy Lett., 6, 451–458 (2021). Acknowledgements: This research was financially supported by the Japan Science and Technology Agency (JST), Advanced Low Carbon Technology Research and Development Program (ALCA), Specially Promoted Research for Innovative Next Generation (SPRING) Batteries Project (Grant Number: JPMJAL1301).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Fan, Xiulin, Xiao Ji, Fudong Han, Jie Yue, Ji Chen, Long Chen, Tao Deng, Jianjun Jiang und Chunsheng Wang. „Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery“. Science Advances 4, Nr. 12 (Dezember 2018): eaau9245. http://dx.doi.org/10.1126/sciadv.aau9245.

Der volle Inhalt der Quelle
Annotation:
Solid-state electrolytes (SSEs) are receiving great interest because their high mechanical strength and transference number could potentially suppress Li dendrites and their high electrochemical stability allows the use of high-voltage cathodes, which enhances the energy density and safety of batteries. However, the much lower critical current density and easier Li dendrite propagation in SSEs than in nonaqueous liquid electrolytes hindered their possible applications. Herein, we successfully suppressed Li dendrite growth in SSEs by in situ forming an LiF-rich solid electrolyte interphase (SEI) between the SSEs and the Li metal. The LiF-rich SEI successfully suppresses the penetration of Li dendrites into SSEs, while the low electronic conductivity and the intrinsic electrochemical stability of LiF block side reactions between the SSEs and Li. The LiF-rich SEI enhances the room temperature critical current density of Li3PS4to a record-high value of >2 mA cm−2. Moreover, the Li plating/stripping Coulombic efficiency was escalated from 88% of pristine Li3PS4to more than 98% for LiF-coated Li3PS4. In situ formation of electronic insulating LiF-rich SEI provides an effective way to prevent Li dendrites in the SSEs, constituting a substantial leap toward the practical applications of next-generation high-energy solid-state Li metal batteries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Liu, Zengcai, Wujun Fu, E. Andrew Payzant, Xiang Yu, Zili Wu, Nancy J. Dudney, Jim Kiggans, Kunlun Hong, Adam J. Rondinone und Chengdu Liang. „Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4“. Journal of the American Chemical Society 135, Nr. 3 (14.01.2013): 975–78. http://dx.doi.org/10.1021/ja3110895.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Calpa, Marcela, Hiroshi Nakajima, Shigeo Mori, Yosuke Goto, Yoshikazu Mizuguchi, Chikako Moriyoshi, Yoshihiro Kuroiwa, Nataly Carolina Rosero-Navarro, Akira Miura und Kiyoharu Tadanaga. „Formation Mechanism of β-Li3PS4 through Decomposition of Complexes“. Inorganic Chemistry 60, Nr. 10 (29.04.2021): 6964–70. http://dx.doi.org/10.1021/acs.inorgchem.1c00294.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tsukasaki, Hirofumi, Hideyuki Morimoto und Shigeo Mori. „Thermal behavior and microstructure of the Li3PS4–ZnO composite electrolyte“. Journal of Power Sources 436 (Oktober 2019): 226865. http://dx.doi.org/10.1016/j.jpowsour.2019.226865.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Li3PS4"

1

Wang, Hongjiao. „Liquid phase synthesis and application of sulfide solid electrolyte“. Electronic Thesis or Diss., Université de Rennes (2023-....), 2023. http://www.theses.fr/2023URENS101.

Der volle Inhalt der Quelle
Annotation:
Les batteries Li-ion traditionnelles utilisent des électrolytes liquides organiques, qui sont sensibles aux températures élevées en raison de leur faible point d'éclair et de leur grande volatilité. Par conséquent, le remplacement des électrolytes liquides par des électrolytes solides devient l'un des points chauds de la recherche pour les batteries de stockage d'énergie chimique de la prochaine génération. Dans cette thèse, une méthode en phase liquide utilisant LiEt3BH ou Li-Naph comme matières premières est inventée pour synthétiser des sol précurseurs Li3PS4 et obtenir des nanoparticules Li3PS4 monodispersées. Cette thèse développe également un sol Li3PS4 présentant une excellente compatibilité avec les anodes de Li, de sorte qu'une couche protectrice Li3PS4 peut être déposée sur le Li par spin-coating du sol. En conséquence, les cellules symétriques au lithium avec des électrodes au lithium modifiées par Li3PS4 peuvent être cyclées de manière stable pendant 800 h à 1 mA cm-2. Pour améliorer encore la stabilité du cycle de l'anode Li sous une densité de courant extrêmement élevée, une structure à trois couches Ag/Li-LiF-PEO (alliage, inorganique et organique) est proposée. La structure Ag/Li-LiF-PEO améliore la stabilité de cyclage des anodes Li sous une densité de courant extrêmement élevée, ce qui est démontré dans les batteries symétriques au lithium et les batteries Li//LFP. À une densité de courant ultra-élevée de 20 mA cm-2, la cellule symétrique au lithium survit à un test de 1 450 cycles. Cette étude peut contribuer au développement de batteries Li métal à haute performance
Traditional Li-ion batteries use organic liquid electrolytes, which are susceptible to high temperatures due to their low flash point and high volatility. Therefore, it becomes one of the research hotspots for next generation chemical energy storage batteries to replace liquid electrolytes with solid electrolytes. In this thesis, a liquid-phase method using LiEt3BH or Li-Naph as raw materials is invented to synthesize Li3PS4 precursor sol and to obtain monodispersed Li3PS4 nanoparticles. This thesis also develops Li3PS4 sol exhibiting excellent compatibility with Li anodes, so that a Li3PS4 protective layer can be coated on Li by spin-coating of the sol. As a result, the lithium symmetrical cells with Li3PS4-modified lithium electrodes can be cycled stably for 800 h at 1 mA cm−2. To further improve the cycling stability of the Li anode under an extremely high current density, a Ag/Li-LiF-PEO (alloy, inorganic and organic) three-layer structure is proposed. The Ag/Li-LiF-PEO structure enhances the cycling stability of Li anodes under ultrahigh current density, which is demonstrated in lithium symmetrical batteries and Li//LFP batteries. At an ultrahigh current density of 20 mA cm-2, the lithium symmetrical cell survives a 1450-cycle test. This study may contribute to the development of high-performance Li metal batteries
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jacquet, Quentin. „Li-rich Li3MO4 model compounds for deciphering capacity and voltage aspects in anionic redox materials“. Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS332.

Der volle Inhalt der Quelle
Annotation:
Le réchauffement climatique, provoqué par l’augmentation de la concentration de CO2 dans l’atmosphère, est un problème majeur du 21ème siècle. C’est pourquoi, il est d’une importance capitale de valoriser l’utilisation des énergies renouvelables et des technologies de stockage d’énergie telles que les batteries Li-ion. Suivant ce but, les chercheurs ont mis au point un nouveau matériau d’électrode, le Li-rich NMC, dont l’utilisation permet d’augmenter significativement la capacité des batteries Li-ion grâce à la participation des oxygènes de l’oxyde dans la réaction électrochimique. Cependant, ce nouveau phénomène va de pair avec une hystérésis de potentiel qui empêche la commercialisation du Li-rich NMC. Afin de proposer une solution à l’hystérésis de potentiel tout en continuant à augmenter la capacité des électrodes, des études fondamentales sont nécessaires, notamment: la redox anionique a-t-elle une limite de capacité ? et, quelle est l’origine de l’hystérésis ? Pour répondre à la première question, nous avons conçu des matériaux, de composition chimique A3MO4 (A étant du Li ou Na, et M un mix de Ru, Sb, Nb, Ta ou Ir), ayant une redox anionique exacerbée. Après avoir caractérisé la structure de ces nouveaux matériaux, nous avons étudié leur mécanisme électrochimique et montré que la redox anionique est limitée par la décomposition de l’électrode via formation de O2 ou dissolution. Dans un second temps, par l’étude de deux nouveaux matériaux, Li1.3Ni0.27Ta0.43O2 et Li1.3Mn0.4Ta0.3O2 ayant des hystérésis de potentiel très différentes, nous avons montré le lien entre la redox anionique, la taille de la bande interdite, et l’hystérésis de potentiel
Global warming, due to the increasing CO2 concentration in the atmosphere, is a major issue of the 21th century, hence the need to move towards the use of renewable energies and the development of electrical storage devices, such as Li-ion batteries. Along that line, a new electrode material called Li-rich NMCs have been developed, having higher capacity, 290 mAh/g, than commercial materials, like LiCoO2 (150 mAh/g), thanks to participation of oxygen anions into the redox reaction. This process, called anionic redox, unfortunately comes with voltage hysteresis preventing the commercialization of Li-rich NMC. To alleviate this issue while increasing the capacity, fundamental understanding on anionic redox is needed, specifically concerning two points: is anionic redox limited in terms of capacity? And what is the origin of the voltage hysteresis? In a first part, with the aim to assess the limit of anionic redox capacity, we designed new compounds, having enhanced oxygen oxidation behavior, belonging to the A3MO4 family (A being Li or Na and with M a mix of Ru, Ir, Nb, Sb or Ta). We performed their synthesis, deeply characterized their structure, and, by studying their charge compensation mechanism, we showed that anionic redox is always limited by either O2 release or metal dissolution. In a second part, we designed two new materials, Li1.3Ni0.27Ta0.43O2 and Li1.3Mn0.4Ta0.3O2, having different voltage hysteresis, in order to identify the origin of this phenomenon. Coupling spectroscopic techniques with theoretical calculations, we suggest that the electronic structure, namely the size of the charge transfer band gap, plays a decisive role in voltage hysteresis
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Shiu, Je-Jang, und 許哲彰. „Preparation and characterization of LiFePO4 cathode materials with impurities of Fe2P and Li3PO4“. Thesis, 2010. http://ndltd.ncl.edu.tw/handle/92729936914562099193.

Der volle Inhalt der Quelle
Annotation:
碩士
大同大學
材料工程學系(所)
98
In this study, a solution method was used to prepare stoichiometric olivine structured LiFePO4 at various heat treatment temperatures and LiFe1-xPO4 (0≤ x ≤ 0.09) cathode materials. The crystalline structures, compositions, carbon contents, and morphology of the synthesized samples were investigated with XRD, ICP-OES, PSA, EA, and SEM. The electrochemical properties of synthesized samples were analyzed by capacity retention and cyclic voltammetric studies. From the results of XRD, Fe2P was found in samples heat-treated at temperatures higher than 800oC. However, it does not improve the cycling performance and rate capability in comparison with the sample prepared at 775oC which shows the best cycling performance among the prepared samples. Whereas the samples prepared at temperatures higher than 850oC show significant capacity fading that might be attributed to the existence of Li3PO4 impurity and particle size growth. From the diffusivity of Li+ ions in the prepared samples determined from the results of cyclic voltammetric study with various potential scan rates, the existence of Fe2P can increase the diffusion coefficient of lithium ion. Among the prepared LiFe1-xPO4 (0 ≤ x ≤ 0.09) samples, powders prepared with 0.03 ≤ x ≤ 0.05 show better cycling performance than others.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wu, Jen-Yuan, und 吳仁淵. „Investigation of Electrochemical Performance of Lithium-Sulfur Cell with High C-Rate Capability by Addition of Water-Soluble Li3PO4 Ionic Conductor“. Thesis, 2014. http://ndltd.ncl.edu.tw/handle/87961723426456148980.

Der volle Inhalt der Quelle
Annotation:
碩士
國立清華大學
材料科學工程學系
102
Rechargeable lithium sulfur cell has become the next-generation energy storage system owing to its theoretical capacity of 1673 mAh/g is 5 times higher than current state of layer-like lithium ion cell based on intercalation mechanism. The discharge/charge of electrode is formed with cleavage/formation, therefore its quantity of reactive lithium ions are not constrained by the structural stability.The present work attempts to study the characteristics of liquid-based lithium sulfur cell with lithium co-salt of LiNO3. At the first part, the study examines how the cut-off voltage region and addition of electrolyte volume (E/S ratio) affect the earlier stage of discharge capacity and middle/later stage of cycle retention. At the second part, water soluble Li3PO4 of ionic conductor is introduced to the lithium sulfur system. The study compares the electrochemical performance by using cycle voltammetry method, AC impedance method, X-ray diffraction and SEM analysis. The results suggest that the addition of 16.7 to 25 % Li3PO4 of conductive agent shows the uniform distribution on the electrode after charge/discharge, therefore they have better rate capability and cycle performance. Such a simple method for the construction of electrode scaffolds shows potential for high C-rate performance lithium sulfur batteries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Li3PS4"

1

Villars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk, I. Savysyuk und R. Zaremba. „Li3UO4“. In Structure Types. Part 10: Space Groups (140) I4/mcm – (136) P42/mnm, 245. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19662-1_184.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Villars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk und I. Savysyuk. „Li3VO4∙6H2O“. In Structure Types. Part 9: Space Groups (148) R-3 - (141) I41/amd, 363–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02702-4_252.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Villars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, N. Melnichenko-Koblyuk et al. „Li3.54(Al0.29Si0.71)12O24“. In Structure Types. Part 5: Space Groups (173) P63 - (166) R-3m, 888. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-46933-9_749.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bullett, D. W. „Electronic Structure of Lithium Boride Li3B14“. In The Physics and Chemistry of Carbides, Nitrides and Borides, 555–59. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2101-6_32.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Villars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, N. Melnichenko-Koblyuk et al. „Li34(Zn0.11Ga0.89)74.5“. In Landolt-Börnstein - Group III Condensed Matter, 524–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-44752-8_433.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Li3PS4"

1

Sun, Yin-Qiu, Zheng Wei, Xiao-Tao Luo und Chang-Jiu Li. „Characterization of Lithium Phosphate Deposit by Atmospheric Plasma Spraying“. In ITSC2021, herausgegeben von F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0682.

Der volle Inhalt der Quelle
Annotation:
Abstract Plasma spraying was used to deposit Li3PO4 coatings from sintered dense powders in three size ranges to study the effects of particle size and spraying distance. Coating microstructure, crystal structure, and composition were characterized using SEM, XRD, ICP-MS, and FTIR. It was found that sintered dense powders have a high temperature orthorhombic phase (γ-Li3PO4) that differs from the β-Li3PO4 phase associated with agglomerated Li3PO4. Plasma-sprayed coatings produced from these powders have similarly dense microstructures with fracture-surface morphology like that of sintered bulk. The effect of particle size and spraying distance on atomic ratio is also investigated in the study.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Каменецких, A. С., Н. В. Гаврилов, П. В. Третников, И. С. Жидков, И. А. Морозов und A. A. Ершов. „Высокоскоростной синтез тонких пленок LiPON термическим испарением Li3PO4 в азотной плазме“. In 8th International Congress on Energy Fluxes and Radiation Effects. Crossref, 2022. http://dx.doi.org/10.56761/efre2022.c4-o-018701.

Der volle Inhalt der Quelle
Annotation:
Тонкие пленки литий-проводящего ионного электролита LiPON перспективны для создания полностью твердотельных литий-ионных микробатарей. Однако наиболее распространенный метод получения таких пленок ВЧ магнетронным распылением имеет низкую производительность. Для увеличения скорости синтеза тонких пленок LiPON, мы использовали метод анодного испарения ортофосфата лития в азотной плазме дуги низкого давления. Показано, что анодное испарение Li3PO4 в дуге сопровождается интенсивным разложением паров Li3PO4, которое приводит к увеличению концентрации свободных атомов лития, как в плазме дуги, так и в объеме пленки. Высокая диффузионная подвижность атомов лития в пленки и их взаимодействие со свободными атомами кислорода, которые возникают в результате замещения атомами азота в структуре LiPON, способствуют образованию в растущей пленки включений с составом, отличным от состава LiPON. Этот эффект затрудняет получение однофазных LiPON пленок с однородной структурой и ухудшает ионную проводимость пленок. Предложен метод непрямого накала тигля с Li3PO4, который уменьшает взаимодействие плазмы разряда с плотным паром вблизи поверхности расплава. Представлены результаты измерения элементного состава пленок и их структуры. Снижение степени разложения паров позволило повысить скорость испарения Li3PO4 и получить LiPON пленки с ионной проводимостью до 2·10-6 (Ом·cм)-1 при скорости осаждения пленки до 15 нм/мин
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rahangdale, S. R., S. P. Wankhede, B. S. Dhabekar, U. A. Palikundwar und S. V. Moharil. „TL-OSL study of Li3PO4: Mg, Cu phosphor“. In ADVANCED MATERIALS AND RADIATION PHYSICS (AMRP-2015): 4th National Conference on Advanced Materials and Radiation Physics. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4929212.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Prayogi, Lugas Dwi, Muhamad Faisal, Evvy Kartini, Wagiyo Honggowiranto und Supardi. „Morphology and conductivity study of solid electrolyte Li3PO4“. In PROCEEDINGS OF INTERNATIONAL SEMINAR ON MATHEMATICS, SCIENCE, AND COMPUTER SCIENCE EDUCATION (MSCEIS 2015). AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4941513.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pandey, Anant, Mrunmoy Jena, Chirag Malik und Birendra Singh. „An investigation of the thermoluminescence properties of dysprosium doped Li3PO4 nanophosphor“. In DAE SOLID STATE PHYSICS SYMPOSIUM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0017133.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wang, Hairong, Liu Zhen und Chen Di. „Prototypes of potentiometric SO2 gas sensors based on Li3PO4 electrolyte thin film“. In 2015 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). IEEE, 2015. http://dx.doi.org/10.1109/icemi.2015.7494423.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zimmer, Laurent. „Application of Laser Induced Ignition Interferometry and Plasma Spectroscopy (LI3PS) to Spray Ignition“. In Laser Ignition Conference. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/lic.2017.lfa2.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wang, Hairong, Peng Li, Guoliang Sun und Zhuangde Jiang. „Influence of substrate surface roughness on the properties of a planar-type CO2 sensor using evaporated Li3PO4 film“. In 2013 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2013. http://dx.doi.org/10.1109/nems.2013.6559756.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Amamoto, Ippei, Hirohide Kofuji, Munetaka Myochin, Tatsuya Tsuzuki, Yasushi Takasaki, Tetsuji Yano und Takayuki Terai. „Separation of Lanthanoid Phosphates From the Spent Electrolyte of Pyroprocessing“. In ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2009. http://dx.doi.org/10.1115/icem2009-16265.

Der volle Inhalt der Quelle
Annotation:
This study is carried out to make the pyroprocessing hold a competitive advantage from the viewpoint of environmental load reduction and economical improvement. As one of the measures is to reduce the volume of the high-level radioactive waste, the phosphate conversion method is applied for removal of fission products from the melt as spent electrolyte in this paper. Though the removing target elements in the medium are alkali metals, alkaline earth metals and lanthanoid elements, only lanthanoid elements and lithium form the insoluble phosphates by reaction with Li3PO4 or K3PO4. Therefore, as the first step, the precipitation experiment was carried out to observe the behaviours of elements which form the insoluble precipitates as double salts other than simple salts. Then the filtration was experimented to remove lanthanoid precipitates in the spent electrolyte using Fe2O3-P2O5 glass system as a filtlation medium which is compatible material with the glassification. The result of separation of lanthanoid precipitates by filtration was effective and attained almost 100%.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Narumi, Kengo, Tomoya Mori, Rei Kumasaka, Tomohiro Tojo, Ryoji Inada und Yoji Sakurai. „Synthesis and properties of Li3VO4 - Carbon composite as negative electrode for lithium-ion battery“. In PROCEEDING OF THE 3RD INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY 2016 (3RD IGNITE-2016): Advanced Materials for Innovative Technologies. Author(s), 2017. http://dx.doi.org/10.1063/1.4993380.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie