Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Level repulsion“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Level repulsion" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Level repulsion"
MA, TAO, und R. A. SEROTA. „LEVEL REPULSION IN INTEGRABLE SYSTEMS“. International Journal of Modern Physics B 26, Nr. 13 (05.05.2012): 1250095. http://dx.doi.org/10.1142/s0217979212500956.
Der volle Inhalt der QuelleWan, Qingyun, Jun Yang, Wai-Pong To und Chi-Ming Che. „Strong metal–metal Pauli repulsion leads to repulsive metallophilicity in closed-shell d8 and d10 organometallic complexes“. Proceedings of the National Academy of Sciences 118, Nr. 1 (28.12.2020): e2019265118. http://dx.doi.org/10.1073/pnas.2019265118.
Der volle Inhalt der QuelleScharf, R., B. Dietz, M. Kuś, F. Haake und M. V. Berry. „Kramers' Degeneracy and Quartic Level Repulsion“. Europhysics Letters (EPL) 5, Nr. 5 (01.03.1988): 383–89. http://dx.doi.org/10.1209/0295-5075/5/5/001.
Der volle Inhalt der QuelleMa, Jian-Zhong. „On the degree of level repulsion“. Physics Letters A 207, Nr. 5 (November 1995): 269–73. http://dx.doi.org/10.1016/0375-9601(95)00726-j.
Der volle Inhalt der QuelleMüller, M., F. M. Dittes, W. Iskra und I. Rotter. „Level repulsion in the complex plane“. Physical Review E 52, Nr. 6 (01.12.1995): 5961–73. http://dx.doi.org/10.1103/physreve.52.5961.
Der volle Inhalt der QuelleSacha, Krzysztof, und Jakub Zakrzewski. „Driven Rydberg Atoms Reveal Quartic Level Repulsion“. Physical Review Letters 86, Nr. 11 (12.03.2001): 2269–72. http://dx.doi.org/10.1103/physrevlett.86.2269.
Der volle Inhalt der QuelleFrank, Winfried, und Peter von Brentano. „Classical analogy to quantum mechanical level repulsion“. American Journal of Physics 62, Nr. 8 (August 1994): 706–9. http://dx.doi.org/10.1119/1.17500.
Der volle Inhalt der QuelleGarrett, J. D., J. Q. Robinson, A. J. Foglia und H. Q. Jin. „Nuclear level repulsion and order vs. chaos“. Physics Letters B 392, Nr. 1-2 (Januar 1997): 24–29. http://dx.doi.org/10.1016/s0370-2693(96)01528-6.
Der volle Inhalt der QuelleHeiss, W. D. „Phases of wave functions and level repulsion“. European Physical Journal D - Atomic, Molecular and Optical Physics 7, Nr. 1 (01.08.1999): 1–4. http://dx.doi.org/10.1007/s100530050339.
Der volle Inhalt der QuelleCaurier, E., und B. Grammaticos. „Extreme level repulsion for chaotic quantum Hamiltonians“. Physics Letters A 136, Nr. 7-8 (April 1989): 387–90. http://dx.doi.org/10.1016/0375-9601(89)90420-9.
Der volle Inhalt der QuelleDissertationen zum Thema "Level repulsion"
Iskra, Wlodzimierz, Markus Müller, Ingrid Rotter und Frank-Michael Dittes. „Level repulsion in the complex plane“. Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-32095.
Der volle Inhalt der QuelleIskra, Wlodzimierz, Markus Müller, Ingrid Rotter und Frank-Michael Dittes. „Level repulsion in the complex plane“. Forschungszentrum Rossendorf, 1995. https://hzdr.qucosa.de/id/qucosa%3A22036.
Der volle Inhalt der QuelleBourcin, Guillaume. „Spincavitronics : repulsive and attractive energy levels in YIG bulk-microwave cavity coupled systems“. Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0447.
Der volle Inhalt der QuelleThis thesis investigates the field of spincavitronics, focusing on the strong coupling between magnons and photons in three-dimensional (3D) cavities, leading to the formation of cavity magnon polaritons (CMPs). We explore the transition between the strong coupling and ultra-strong coupling regimes, achieving coupling strengths between 12% and 58% of the cavity frequency at room temperature. Magnons, with their tunable frequencies and long coherence times, are promising candidates for quantum memory and other quantum technologies, offering applications in quantum computing and long-distance quantum communication. Our research contributes to the development of a deeper understanding of magnon-photon interactions, with implications for improving the coupling strength and optimizing hybrid quantum systems. Additionally, this work presents a detailed study of the level attraction phenomenon between magnons and antiresonant photonic modes in 3D cavities. This phenomenon enables non-reciprocal photon transmission, which is essential for the design of advanced communication devices such as circulators and quantum memory systems. We develop a physical model to explain the emergence of these antiresonances, supported by experimental validation and simulations. These insights open new pathways for applying level attraction mechanisms in sensing technologies and quantum information processing, demonstrating the versatility of spincavitronics for future advancements in both quantum technologies and radiofrequency applications
Medina, Tulio Eduardo Restrepo. „Geração radiativa de repulsão vetorial para quarks leves“. reponame:Repositório Institucional da UFSC, 2014. https://repositorio.ufsc.br/xmlui/handle/123456789/129306.
Der volle Inhalt der QuelleMade available in DSpace on 2015-02-05T20:56:09Z (GMT). No. of bitstreams: 1 330269.pdf: 2723044 bytes, checksum: acc5bb1f16ab0d07a08b676e16f1ea63 (MD5) Previous issue date: 2014
Abstract: We apply a non-perturbative analytical method, known as the Optimized PerturbationTheory (OPT), to the Polyakov-Nambu-Jona-Lasinio (PNJL) model in order to investigate physical quantities associated with the QCD phase transitions. We consider the Taylor expansion of the pressure in powers of µ/T obtaining the second cumulant (c2) which is associated to the quark number susceptibility. We discuss how the OPT nite Nc radiative (quantum) corrections induce a contribution to the pressure which behaves as a vector repulsion even when such a channel is absent in the original classical potential. Our results are then compared with the ones furnished by lattice QCD simulations and by the large-Nc approximation showing that, physically, the OPT results resemble those furnished by the latter approximation when a repulsive vector channel is explicitly included in the classical potential. In this case, both approximations fail to correctly describe the Stefan-Boltzmann limit at high temperatures. We discuss how this problem can be circumvented by taking the couplings to be temperature dependent so as to simulate the phenomenon of asymptotic freedom. Since this is the first time the OPT is applied to the PNJL we also discuss many technicalities associated with the evaluation of two loop (exchange) diagrams.
Neste trabalho o método analítico não perturbativo conhecido como Teoria de Perturbação Otimizada (OPT) é aplicada ao modelo de Polyakov-Nambu-Jona-Lasinio (PNJL) para que quantidades físicas, associadas com as transições de fase da QCD, possam ser calculadas. A expansão da pressão em potências de µ/T é considerada para obter o segundo cumulante (c2) que é uma quantidade relacionada com a susceptibilidade do número de quarks. Primeiramente discutimos como as correções radiativas de Nc finito geradas pela OPT produzem uma contribuição que se comporta como um termo vetorial repulsivo mesmo quando este tipo de canal está ausente no potencial clássico original. Em seguida, nossos resultados são comparados com aqueles fornecidos pelas simulações na rede e também pela aproximação de Nc grande(LN). Fisicamente, os resultados da OPT são similares aqueles fornecidos pela aproximação LN quando um canal vetorial repulsivo é explicitamente incluido no potencial clássico. Neste caso, nenhuma destas aproximações analíticas produz corretamente o limite de Stefan Boltzmann para altas temperaturas. Contudo, nossos resultados sugerem como estes problemas podem ser contornados tomando-se as constantes de acoplamento como sendo dependentes da temperatura, de maneira que o fenômeno da liberdade assimptótica possa ser simulado. Esta é a primeira vez que a OPT é aplicada ao modelo de PNJL e por isto vários aspectos técnicos relacionados com o cálculo de diagramas de dois laços são também aqui apresentados.
Bücher zum Thema "Level repulsion"
Fyodorov, Yan, und Dmitry Savin. Condensed matter physics. Herausgegeben von Gernot Akemann, Jinho Baik und Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.35.
Der volle Inhalt der QuelleBołtuć, Piotr. Church-Turing Lovers. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190652951.003.0014.
Der volle Inhalt der QuelleBuchteile zum Thema "Level repulsion"
Haake, Fritz, Sven Gnutzmann und Marek Kuś. „Level Repulsion“. In Quantum Signatures of Chaos, 71–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97580-1_3.
Der volle Inhalt der QuelleHaake, Fritz. „Level Repulsion“. In Quantum Signatures of Chaos, 37–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04506-0_3.
Der volle Inhalt der QuelleHaake, Fritz. „Level Repulsion“. In Quantum Signatures of Chaos, 47–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-05428-0_3.
Der volle Inhalt der QuelleHeiss, W. D., und W. H. Steeb. „Level Repulsion and Exceptional Points“. In Stochasticity and Quantum Chaos, 91–98. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0169-1_8.
Der volle Inhalt der QuelleMate, C. Mathew, und Robert W. Carpick. „Physical Origins of Surface Forces“. In Tribology on the Small Scale, 181–233. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199609802.003.0007.
Der volle Inhalt der QuelleHarder, Michael, und Can-Ming Hu. „Cavity Spintronics: An Early Review of Recent Progress in the Study of Magnon–Photon Level Repulsion“. In Solid State Physics, 47–121. Elsevier, 2018. http://dx.doi.org/10.1016/bs.ssp.2018.08.001.
Der volle Inhalt der QuelleCampos, Esmeralda, und Genaro Zavala. „A Look into Students' Interpretation of Electric Field Lines“. In Advances in Educational Technologies and Instructional Design, 342–64. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2026-9.ch017.
Der volle Inhalt der QuelleWinter, Mark J., und John E. Andrew. „p-Block elements“. In Foundations of Inorganic Chemistry. Oxford University Press, 2000. http://dx.doi.org/10.1093/hesc/9780198792888.003.0005.
Der volle Inhalt der QuelleShestakov, Mikhail, und Alexander Korchagin. „Computer simulation of mechanisms to reduce the metabolic costs of running while taking into account the individual characteristics of the athlete“. In Technology in Sports - Recent Advances, New Perspectives and Application [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1003066.
Der volle Inhalt der QuelleBalucani, Umberto, und Marco Zoppi. „Generalized kinetic theory“. In Dynamics of the Liquid State, 142–280. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780198517399.003.0004.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Level repulsion"
Lehmann, Kevin K., und Stephen L. Coy. „Statistical analysis of the microwave-optical double resonance spectra of NO2: ergodicity without level repulsion?“ In AIP Conference Proceedings Volume 172. AIP, 1988. http://dx.doi.org/10.1063/1.37340.
Der volle Inhalt der QuelleDong, Enyuan, Peng Tian, Yongxing Wang und Wei Liu. „The design and experimental analysis of high-speed switch in 1.14kV level based on novel repulsion actuator“. In 2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). IEEE, 2011. http://dx.doi.org/10.1109/drpt.2011.5993995.
Der volle Inhalt der QuellePenev, Kamen, und Aristides A. G. Requicha. „A Potential Field Algorithm for Fixture Synthesis in 2D“. In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/cie-1343.
Der volle Inhalt der QuelleGao, Bo, und Xiaofeng Peng. „Coupling Effect of Interfacial Transport on Particle-Surface Capillary Forces“. In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52033.
Der volle Inhalt der QuelleChien, Jui-Ta, Yung-Hsing Fu, Chao-Ting Chen, Shun-Chiu Lin, Yi-Chung Shu und Wen-Jong Wu. „Broadband Rotational Energy Harvesting Using Micro Energy Harvester“. In ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-8029.
Der volle Inhalt der QuelleJain, Kunal, und J. J. McCarthy. „Discrete Characterization of Cohesion in Gas-Solid Flows“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32491.
Der volle Inhalt der QuelleMichopoulos, John G., Athanasios Iliopoulos und Marcus Young. „Towards Static Contact Multiphysics of Rough Surfaces“. In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71055.
Der volle Inhalt der QuelleFresco, Anthony N. „Solute Ion Linear Alignment as the Energy Source to Address Aquifer Depletion Fresh Water Scarcity and Sea Level Rise“. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65930.
Der volle Inhalt der QuelleKulkarni, Girish, und Sushil Mujumdar. „Level repulsions in high transmittance modes in one-dimensional random lattices“. In International Conference on Fibre Optics and Photonics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/photonics.2012.m1a.3.
Der volle Inhalt der QuelleHe, S., und R. Ben Mrad. „Development of a multi-level repulsive force out-of-plane micro electrostatic actuator“. In IECON 2009 - 35th Annual Conference of IEEE Industrial Electronics (IECON). IEEE, 2009. http://dx.doi.org/10.1109/iecon.2009.5415321.
Der volle Inhalt der Quelle