Auswahl der wissenschaftlichen Literatur zum Thema „Les Virus“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Les Virus" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Les Virus"

1

Koo, Dong-Jin, Hye-Young Shin, Jung-Hyun Sung, Dong-Kyon Kang und Moo-Ung Chang. „Bean common mosaic virus and Peanut mottle virus isolated from Peanut in Korea“. Research in Plant Disease 8, Nr. 2 (01.08.2002): 92–100. http://dx.doi.org/10.5423/rpd.2002.8.2.092.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Koprivica, Marko. „Epstein-Barr virus: Causes, consequences, diagnosis and treatment of Epstein-Barr virus in human“. Sanamed, Nr. 00 (2024): 42. http://dx.doi.org/10.5937/sanamed0-48644.

Der volle Inhalt der Quelle
Annotation:
The Epstein-Barr virus (EBV) belongs to the family of herpesviruses, subfamily Gammaherpesvirinae, and genus Lymphocryptovirus. Despite this classification, there are two serotypes of the Epstein-Barr virus, namely type A and type B. Both types play significant roles in the development of viremia. Additionally, EBV infection can lead to lymphadenopathy, upper respiratory tract obstruction, spleen rupture, thrombocytopenia, and recently, there has been increased emphasis on the connection between this virus and certain malignant neoplasms. Diagnosing this virus can be challenging if clinicians rely solely on serological confirmation. In some cases, it is necessary to perform more specific methods, in addition to considering the clinical picture and history, to prove the presence of the virus in blood, nasopharyngeal swabs, and other tissue samples. The aim of this paper is to present the severity and consequences caused by the Epstein-Barr virus and to emphasize the importance of preventive measures in preventing the virus from coming into contact with susceptible individuals. Prevention plays a crucial role in reducing contact with the virus. Since the infection spreads via droplets, wearing masks in healthcare facilities and regular hand washing are hygiene priorities to prevent infection and further transmission.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

AYGEN, Bilgehan, Mustafa Kemal ÇELEN, İftihar KÖKSAL, Selma TOSUN, Oğuz KARABAY, Tansu YAMAZHAN, Orhan YILDIZ, Celal AYAZ und Fehmi TABAK. „The Prevalence and Epidemiological Characteristics of Hepatitis B Virus and Hepatitis C Virus Coinfection in Turkey“. Turkiye Klinikleri Journal of Medical Sciences 33, Nr. 5 (2013): 1245–49. http://dx.doi.org/10.5336/medsci.2012-32319.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jerković-Mujkić, Anesa, Osman Delić und Renata Bešta. „NALAZ MIJEŠANE VIRUSNE INFEKCIJE NA CRNOJ ZOVI (SAMBUCUS NIGRA L.)“. Radovi Šumarskog fakulteta Univerziteta u Sarajevu 40, Nr. 1 (01.06.2010): 73–80. http://dx.doi.org/10.54652/rsf.2010.v40.i1.158.

Der volle Inhalt der Quelle
Annotation:
UDK 582.971.1:630*44(497.6 Sarajevo) Na brojnim grmovima crne zove (Sambucus nigra L.), koji rastu na području Sarajeva, uočeni su simptomi virusne infekcije. Listovi bolesnih zova pokazivali su uglavnom simptom zelene mreže sa tamnozelenim nervima i svjetlijim interkostalnim područjima, dok je samo jedan grm na listovima imao žute nerve okružene tamnozelenim područjima. U kasnijoj infekciji na lisnoj plojci mogli su se zapaziti nekrotični prstenovi ili nekroze u vidu tačkica promjera 1 – 2 mm. Iz listova prirodno zaraženih biljaka crne zove istovremeno su izolirana dva virusa: virus uvijenosti lista trešnje (Cherry leaf roll virus - CLRV) i virus šuštavosti duhana (Tobacco rattle virus – TRV). Virusi su identificirani na osnovu reakcije diferencijalnih test biljaka i serološki primjenom ELISA-testa. Simultani napad dvaju virusa je djelovao sinergistički i na biljkama Sambucus nigra L uzrokovao jače simptome nego u pojedinačnoj infekciji CLRV-om ili TRV-om.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bae, Sun-Hwa, Mi-Soon Kim, Min-Young Jung, Soon-Bae Kwon, Ki-Hyun Ryu, Kook-Hyung Kim und Jang-Kyung Choi. „Discrimination of Cucumber mosaic virus and Broad bean wilt virus 2 Using Local Lesions on Vigna sinensis“. Research in Plant Disease 12, Nr. 3 (01.12.2006): 221–25. http://dx.doi.org/10.5423/rpd.2006.12.3.221.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Naderpour, M., und L. Sadeghi. „Multiple DNA markers for evaluation of resistance against Potato virus Y, Potato virus S and Potato leafroll virus“. Czech Journal of Genetics and Plant Breeding 54, No. 1 (20.03.2018): 30–33. http://dx.doi.org/10.17221/180/2016-cjgpb.

Der volle Inhalt der Quelle
Annotation:
Molecular markers within or close to genes of interest play essential roles in marker-assisted selection. PCR-based markers have been developed for numerous traits in different plant species including several genes conferring resistance to viruses in potato. In the present work, rapid and reliable approaches were developed for the simultaneous detection of Ryadg and Ry-fsto, Ns, and PLRV.1 genes conferring resistance to Potato virus Y, Potato virus S and Potato leafroll virus, respectively, on the basis of previously published and newly modified markers. The sequence characterized amplified region (SCAR) markers for Ryadg, Ns and PLRV1 and the newly modified cleaved amplified polymorphic sequences (CAPS) marker for Ry-fsto were amplified in one PCR reaction which could simply characterize Ryadg and PLRV.1 resistance. Additional digestion of amplicons with EcoRV and MfeI for genotyping the Ry-fsto and Ns resistance genes, respectively, was needed. The effectiveness of genotyping in triplex and tetraplex PCRs was tested on 35 potato varieties used for potato seed production and breeding programs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ahmad, Nadeem, Rubeena Bano und Priyanka Singh. „Ebola Virus Disease“. Indian Journal of Medical & Health Sciences 3, Nr. 2 (2016): 131–34. http://dx.doi.org/10.21088/ijmhs.2347.9981.3216.10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Richard Martis, Pascaline Vilash. „Zika Virus Disease“. Community and Public Health Nursing 1, Nr. 2 (2016): 159–61. http://dx.doi.org/10.21088/cphn.2455.8621.1216.16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Danane, Manisha. „Monkeypox Virus Disease“. International Journal of Science and Research (IJSR) 11, Nr. 7 (05.07.2022): 1121–26. http://dx.doi.org/10.21275/sr22713112209.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Koparal, Mahmut, Hilal Alan, Derya Gunduz, Belgin Gulsun, Haluk Unsal und Halil Erdogdu. „Human papilloma virus / Insan papilloma virusu“. Journal of Turgut Ozal Medical Center 23, Nr. 3 (2016): 353. http://dx.doi.org/10.5455/jtomc.2015.12.047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Les Virus"

1

Kamitani, Mari. „Analysis on virus-virus and virus-host interactions in Brassicaceae in natural environments“. 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225436.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gubser, Caroline. „Camelpox virus : the closest known virus to variola virus, the cause of smallpox“. Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393229.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Nettleton, Peter Francis. „Studies on the relationship between bovine virus diarrhoea virus and border disease virus“. Thesis, University of Edinburgh, 1985. http://hdl.handle.net/1842/30569.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bentley, Emma. „The study of highly pathogenic emerging zoonotic virus envelope proteins through pseudotyped virus generation“. Thesis, University of Westminster, 2017. https://westminsterresearch.westminster.ac.uk/item/q4yzx/the-study-of-highly-pathogenic-emerging-zoonotic-virus-envelope-proteins-through-pseudotyped-virus-generation.

Der volle Inhalt der Quelle
Annotation:
Emerging zoonotic viruses pose an increasing threat, causing outbreaks with high rates of morbidity and mortality and frequently significant economic implications. Often, there is a lack or shortfall of effective prophylaxis and diagnostic capabilities. Research towards their development, together with improved surveillance activities are high priority activities to prepare and respond to outbreak threats. Yet handling these viruses commonly requires high containment levels. This can be circumvented by the use of replication defective pseudotyped viruses (PVs), incorporating the viral envelope protein of interest which constitutes the primary surface antigen. This permits the serological detection of neutralising antibodies without the need to handle live virus, as well as other viral entry studies. Hence, PVs are increasingly proving to be a valuable tool for emerging virus research. The aim of this study was to exploit novelties in the unique flexibility of the PV platform to allow the serological assessment of emerging viruses and evaluate technical aspects towards standardisation. Current prophylaxis provides robust protection against rabies virus, yet only confers limited protection against other lyssavirus species, which have a near 100% fatality rate. It is thought protection is afforded against isolates of phylogroup I rabies virus, yet there is limited biological data for the Arctic-like rabies virus (AL RABV) lineage which is endemic across the Middle East and Asia. Although other lyssaviruses pseudotype efficiently, titres of AL RABV PV were low. Within this study, high titre PV was produced by constructing chimeric envelope proteins, splicing the AL RABV ecto-transmembrane domain with the cytoplasmic domain of vesicular stomatitis virus. Comparisons showed this did not alter the serological profile of the AL RABV and they were effectively neutralised by vaccines and antivirals. It could therefore be concluded that they do not pose a significant public health risk. However it is recognised broadly neutralising prophylaxis needs to be developed to protect against more divergent lyssaviruses. In a further study, again utilising the flexibility to manipulate the envelope protein, PV was produced switching the five known antigenic sites of the envelope protein between a phylogroup I (rabies virus) and III (West Caucasian bat virus) isolate. Screening polyclonal sera via a neutralisation assay, the immunologically dominant sites for phylogroup I and III were identified as III and I respectively. This can act to inform future development of more broadly neutralising vaccines. The 2013-16 outbreak of Ebola virus focused global efforts towards the urgent need for effective vaccines and antivirals. To permit low containment level serology studies to assist their development, a panel of filovirus PVs were rapidly produced. Work was carried out to optimise their method of production; determining lentiviral core PV produced by transfecting HEK 293T/17 cells was most efficient. Efforts to repeat the use of chimeric envelope proteins to increase titre proved unsuccessful. The evaluation of target cell lines permissive to infection and appropriate for neutralisation assays identified that the CHO-K1 cell line produced the clearest data. The PV neutralisation assay was subsequently applied to a range of projects to assess candidate prophylaxis and demonstrated the value of the platform to respond to emerging virus outbreaks. Given the increasing prominence in the use of PV, work was undertaken to expand their utility and methods for standardisation. An assessment of new reporter genes found a red fluorescent protein, with a nuclear localisation signal, improved the clarity of data collection and output in additional spectrum to the current repertoire. To be able to correlate the disparate readout units of fluorescent and luminescent reporters, recorded as infectious units (IFU) and relative light units (RLU) respectively, a new construct was produced to integrate and equally express two reporters from cells transduced with PV. It was determined that approximately 1260 RLU equates to 1 IFU, although future work to determine how this fluctuates between cell lines is required. Finally, alternative methods to quantify PV were evaluated, measuring the number of particles, genome copies and reverse transcriptase (RT) activity, in addition to the currently used biological titre. It was found that measures of genome copies and RT activity, in combination with biological titre provides information on the quality of PV preparations and could be used to standardise assay input.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Aravapalli, Sridhar. „Dengue virus and West Nile virus protease inhibitors“. Diss., Wichita State University, 2013. http://hdl.handle.net/10057/6719.

Der volle Inhalt der Quelle
Annotation:
Dengue virus and West Nile virus are important mosquito-borne pathogens of Flaviviridae family affecting millions of people worldwide and causing a severe global healthcare threat. However, currently there are no approved effective antiviral drugs or vaccines available for the treatment of virus infection. This thesis describes the design, synthesis and discovery of two novel classes of reversible competitive inhibitors of Dengue Virus and West Nile Virus NS2B/NS3 protease. Structure-activity relationship studies have led to the identification of a low micromolar hit, which will be used in a hit-to-lead campaign to generate lead compounds that display superior ADMET and PK characteristics.
Thesis (Ph.D.)--Wichita State University, Fairmount College of Liberal Arts and Sciences, Dept. of Chemistry
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Koelzer, Anja Kathrin. „TT Virus“. Diss., lmu, 2002. http://nbn-resolving.de/urn:nbn:de:bvb:19-7124.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Holt, Jim. „Zika Virus“. Digital Commons @ East Tennessee State University, 2016. https://dc.etsu.edu/etsu-works/6468.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chan, Kenneth See Kit. „Nef from pathogenic simian immunodeficiency virus attenuates vaccinia virus /“. For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2004. http://uclibs.org/PID/11984.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Schupp, Dorothee Carolin. „Elucidating virus uptake and fusion by single virus tracing“. Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-148690.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

McHugh, Paul H. „Studies on the antigenicity of bovine virus diarrhoea virus“. Thesis, Queen's University Belfast, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317512.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Les Virus"

1

Pfarrer, Chuck. Virus. Milwaukie, Or: Dark Horse Comics, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Harrington, William. Virus. New York: W. Morrow, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Noordin, Saad. Virus. Kuala Lumpur: WFH Marketing & Services, 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Caine, Peter. Virus. New York: Onyx Books, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Harrington, William. Virus. New York: W. Morrow, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Watkins, Graham. Virus. New York: Carroll & Graf Publishers, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Richard, Preston. Virus. Paris: France loisirs, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Dan, Chernett, Hrsg. Virus. Edinburgh: Barrington Stoke, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Reichs, Kathy. Virus. Amsterdam: Boekerij, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

CORDILLOT, Gilles. Virus. Independently Published, 2021.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Les Virus"

1

Spitzberg, Brian H. „Virus = Language/Language = Virus“. In Theorizing Mediated Information Distortion, 1–93. New York: Routledge, 2023. http://dx.doi.org/10.4324/9781003397151-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Stedman, Kenneth Mark. „Virus“. In Encyclopedia of Astrobiology, 1745–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1660.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Nahler, Gerhard. „virus“. In Dictionary of Pharmaceutical Medicine, 189. Vienna: Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-89836-9_1448.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Stedman, Kenneth Mark. „Virus“. In Encyclopedia of Astrobiology, 2605–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1660.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Weik, Martin H. „virus“. In Computer Science and Communications Dictionary, 1898. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_20860.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tripathy, Sarvodaya. „Virus“. In Encyclopedia of Evolutionary Psychological Science, 1–7. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-16999-6_1320-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gooch, Jan W. „Virus“. In Encyclopedic Dictionary of Polymers, 932. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_15102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Masci, Joseph R., und Elizabeth Bass. „Virus“. In Ebola, 85–95. Boca Raton : Taylor & Francis, 2018.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315119854-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tripathy, Sarvodaya. „Virus“. In Encyclopedia of Evolutionary Psychological Science, 8412–19. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-19650-3_1320.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Toepfer, Georg. „Virus“. In Historisches Wörterbuch der Biologie, 688–91. Stuttgart: J.B. Metzler, 2011. http://dx.doi.org/10.1007/978-3-476-00461-1_33.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Les Virus"

1

Langlois, Thibault, Teresa Chambel, Eva Oliveira, Paula Carvalho, Gonçalo Marques und André Falcão. „VIRUS“. In the 14th International Academic MindTrek Conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1930488.1930530.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Smolin, Jill. „Virus“. In ACM SIGGRAPH 98 Electronic art and animation catalog. New York, New York, USA: ACM Press, 1998. http://dx.doi.org/10.1145/281388.282024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zhang, Naifu. „Computer Virus and Anti-Virus Technology“. In 2022 3rd International Conference on Language, Art and Cultural Exchange(ICLACE 2022). Paris, France: Atlantis Press, 2022. http://dx.doi.org/10.2991/assehr.k.220706.137.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hruska, J. „Virus detection“. In European Conference on Security and Detection - ECOS97 Incorporating the One Day Symposium on Technology Used for Combatting Fraud. IEE, 1997. http://dx.doi.org/10.1049/cp:19970437.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Rubio-Solis, Adrian, Anwar Musah, Wellington P. Dos Santos, Tiago Massoni, Georgiana Birjovanu und Patty Kostkova. „ZIKA Virus“. In DPH2019: 9th International Digital Public Health Conference (2019). New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3357729.3357738.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sebag, Annabel. „Lenovo "Virus"“. In ACM SIGGRAPH 2007 computer animation festival. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1281740.1281817.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Xi Zhang, D. Saha und Hsiao-Hwa Chen. „Analysis of virus and anti-virus spreading dynamics“. In GLOBECOM '05. IEEE Global Telecommunications Conference. IEEE, 2005. http://dx.doi.org/10.1109/glocom.2005.1577963.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Isaeva, A. S., S. I. Volodina, N. O. Porozova, E. E. Idota, G. Babaeva, V. S. Pokrovsky und A. S. Malogolovkin. „COMPARISON OF ONCOLYTIC EFFECT OF MYXOMA VIRUS, VESICULAR STOMATITIS VIRUS AND NEWCASTLE DISEASE VIRUS“. In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-251.

Der volle Inhalt der Quelle
Annotation:
Compared to conventional methods for tumor treatment, oncolytic viruses have a number of advantages: tropism to tumors of various origins, lytic and immunostimulating effect. In our study, we compared the oncolytic effect of myxoma viruses, vesicular stomatitis and Newcastle disease using in vitro and in vivo cancer models.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Masuda, T., H. Maruyama, A. Honda und F. Arai. „Active virus filter for enrichment and manipulation of virus“. In 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2011. http://dx.doi.org/10.1109/memsys.2011.5734621.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jang, Jinhwa, und Se-Eun Bae. „Comparative coevolutionary analysis between Zika virus and Dengue virus“. In 2017 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2017. http://dx.doi.org/10.1109/ictc.2017.8190940.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Les Virus"

1

Borucki, M. Eastern Equine Encephalitis Virus. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/1119926.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wise, Kiersten, Daren Mueller, Adam Sisson, Martin Chilvers, Albert Tenuta, Carl Bradley, Loren Giesler et al. Soybean Vein Necrosis Virus. United States: Crop Protection Netework, Mai 2015. http://dx.doi.org/10.31274/cpn-20190620-025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Uyehara, Catherine, und Scott Stewart. Broadband Respiratory Virus Surveillance. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2011. http://dx.doi.org/10.21236/ada555802.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wick, Charles H., und Patrick E. McCubbin. Recovery of Virus Samples from Various Surfaces with the Integrated Virus Detection System. Fort Belvoir, VA: Defense Technical Information Center, Juni 2010. http://dx.doi.org/10.21236/ada523314.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

ARMY FORCES COMMAND FORT MCPHERSON GA. ILOVEYOU Virus Lessons Learned Report. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada415104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Frankel, Jeffrey, und Randy Kotti. The Virus, Vaccination, and Voting. Cambridge, MA: National Bureau of Economic Research, August 2021. http://dx.doi.org/10.3386/w29186.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Palukaitis, Peter, Amit Gal-On, Milton Zaitlin und Victor Gaba. Virus Synergy in Transgenic Plants. United States Department of Agriculture, März 2000. http://dx.doi.org/10.32747/2000.7573074.bard.

Der volle Inhalt der Quelle
Annotation:
Transgenic plants expressing viral genes offer novel means of engendering resistance to those viruses. However, some viruses interact synergistically with other viruses and it is now known that transgenic plants expressing particular genes of one virus may also mediate synergy with a second virus. Thus, our specific objectives were to (1) determine if transgenic plants resistant to one virus showed synergy with another virus; (2) determine what viral sequences were essential for synergy; and (3) determine whether one of more mechanisms were involved i synergy. This project would also enable an evaluation of the risks of synergism associated with the use of such transgenic plants. The conclusion deriving from this project are as follows: - There is more than one mechanism of synergy. - The CMV 2b gene is required for synergistic interactions. - Synergy between a potyvirus and CMV can break natural resistance limiting CMV movement. - Synergy operates at two levels - increase in virus accumulation and increase in pathology - independently of each other. - Various sequences of CMV can interact with the host to alter pathogenicity and affect virus accumulation. - The effect of synergy on CMV satellite RNA accumulatio varies in different systems. - The HC-Pro gene may only function in host plant species to induce synergy. - The HC-Pro is a host range determinant of potyviruses. - Transgenic plants expressing some viral sequences showed synergy with one or more viruses. Transgenic plants expressing CMV RNA 1, PVY NIb and the TMV 30K gene all showed synergy with at least one unrelated virus. - Transgenic plants expressing some viral sequences showed interference with the infection of unrelated viruses. Transgenic plants expressing the TMV 30K, 54K and 126K genes, the PVY NIb gene, or the CMV 3a gene all showed some level of interference with the accumulation (and in some cases the pathology) of unrelated viruses. From our observations, there are agricultural implications to the above conclusions. It is apparent that before they are released commercially, transgenic plants expressing viral sequences for resistance to one virus need to be evaluated fro two properties: - Synergism to unrelated viruses that infect the same plant. Most of these evaluations can be made in the greenhouse, and many can be predicted from the known literature of viruses known to interact with each other. In other cases, where transgenic plants are being generated from new plant species, the main corresponding viruses from the same known interacting genera (e.g., potexviruses and cucumoviruses, potyviruses and cucumoviruses, tobamoviruses and potexviruses, etc.) should be evaluated. - Inhibition or enhancement of other resistance genes. Although it is unlikely that plants to be released would be transformed with HC-Pro or 2b genes, there may be other viral genes that can affect the expression of plant genes encoding resistance to other pathogens. Therefore, transgenic plants expressing viral genes to engender pathogen-derived resistance should be evaluated against a spectrum of other pathogens, to determine whether those resistance activities are still present, have been lost, or have been enhanced!
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Longnecker, Richard M. Epstein-Barr Virus: A Role for a Tumorigenic Virus in the Etiology of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2001. http://dx.doi.org/10.21236/ada400450.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lan, Xi, John C. F. Hsieh, Haibo Liu, Susan J. Lamont und Qing Zhu. Integration of Host and Virus Gene Expression for Chickens Response to Avian Leukosis Virus Challenge. Ames (Iowa): Iowa State University, Januar 2018. http://dx.doi.org/10.31274/ans_air-180814-388.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Chang, Wing C., und Kishor G. Bhatia. Epstein Barr Virus and Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada442940.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie