Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Les entiers friables.

Dissertationen zum Thema „Les entiers friables“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-16 Dissertationen für die Forschung zum Thema "Les entiers friables" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Lachand, Armand. „Entiers friables et formes binaires“. Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0189/document.

Der volle Inhalt der Quelle
Annotation:
Un entier est dit y-friable si tous ses facteurs premiers n'excèdent pas y. Les valeurs friables de formes binaires interviennent de manière essentielle dans l'algorithme de factorisation du crible algébrique (NFS). Dans cette thèse, nous obtenons des formules asymptotiques pour le nombre de représentations des entiers friables par différentes familles de polynômes. Nous considérons dans la première partie les formes binaires qui se décomposent comme produit d'une forme linéaire et d'une forme quadratique. Nous combinons pour cela le principe d'inclusion-exclusion à des idées issues de travaux sur la distribution multiplicative de certaines suites d'entiers représentés par des formes quadratiques développés par Fouvry et Iwaniec, puis Balog, Blomer, Dartyge et Tenenbaum. Dans un second temps, nous nous concentrons sur les valeurs friables de formes cubiques irréductibles. En adaptant les travaux de Heath-Brown et Moroz sur les nombres premiers représentés par de tels polynômes, nous obtenons des formules asymptotiques valides dans un vaste domaine de friabilité. Notre méthode permet également d'évaluer des moyennes sur les valeurs d'une forme cubique pour d'autres fonctions arithmétiques comprenant en particulier les fonctions de Möbius et de Liouville. Dans le dernier chapitre, nous étudions les corrélations de l'indicatrice des friables avec les nilsuites. En employant la méthode nilpotente de Green et Tao, nous en déduisons une formule pour le nombre de valeurs friables d'un produit de formes affines deux à deux affinement indépendantes
An integer is called y-friable if its largest prime factor does not exceed y. Friable values of binary forms play a central role in the integer factoring algorithm NFS (Number Field Sieve). In this thesis, we obtain some asymptotic formulas for the number of representations of friable integers by various classes of polynomials. In the first part, we focus on binary forms which split as a product of a linear form and a quadratic form. To achieve this, we combine the inclusion-exclusion principle with ideas based on works of Fouvry and Iwaniec and Balog, Blomer, Dartyge and Tenenbaum related to the distribution of some sequences of integers represented by quadratic forms. We then take a closer look at friable values of irreducible cubic forms. Extending some previous works of Heath-Brown and Moroz concerning primes represented by such polynomials, we provide some asymptotic formulas which hold in a large range of friability. With this method, we also evaluate some means over the values of an irreducible cubic form for other multiplicative functions including the Möbius function and the Liouville function. In the last chapter, we investigate the correlations between nilsequences and the characteristic function of friable integers. By using the nilpotent method of Green and Tao, our work provides a formula for the number of friable integers represented by a product of affine forms such that any two forms are affinely independent
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lachand, Armand. „Entiers friables et formes binaires“. Electronic Thesis or Diss., Université de Lorraine, 2014. http://www.theses.fr/2014LORR0189.

Der volle Inhalt der Quelle
Annotation:
Un entier est dit y-friable si tous ses facteurs premiers n'excèdent pas y. Les valeurs friables de formes binaires interviennent de manière essentielle dans l'algorithme de factorisation du crible algébrique (NFS). Dans cette thèse, nous obtenons des formules asymptotiques pour le nombre de représentations des entiers friables par différentes familles de polynômes. Nous considérons dans la première partie les formes binaires qui se décomposent comme produit d'une forme linéaire et d'une forme quadratique. Nous combinons pour cela le principe d'inclusion-exclusion à des idées issues de travaux sur la distribution multiplicative de certaines suites d'entiers représentés par des formes quadratiques développés par Fouvry et Iwaniec, puis Balog, Blomer, Dartyge et Tenenbaum. Dans un second temps, nous nous concentrons sur les valeurs friables de formes cubiques irréductibles. En adaptant les travaux de Heath-Brown et Moroz sur les nombres premiers représentés par de tels polynômes, nous obtenons des formules asymptotiques valides dans un vaste domaine de friabilité. Notre méthode permet également d'évaluer des moyennes sur les valeurs d'une forme cubique pour d'autres fonctions arithmétiques comprenant en particulier les fonctions de Möbius et de Liouville. Dans le dernier chapitre, nous étudions les corrélations de l'indicatrice des friables avec les nilsuites. En employant la méthode nilpotente de Green et Tao, nous en déduisons une formule pour le nombre de valeurs friables d'un produit de formes affines deux à deux affinement indépendantes
An integer is called y-friable if its largest prime factor does not exceed y. Friable values of binary forms play a central role in the integer factoring algorithm NFS (Number Field Sieve). In this thesis, we obtain some asymptotic formulas for the number of representations of friable integers by various classes of polynomials. In the first part, we focus on binary forms which split as a product of a linear form and a quadratic form. To achieve this, we combine the inclusion-exclusion principle with ideas based on works of Fouvry and Iwaniec and Balog, Blomer, Dartyge and Tenenbaum related to the distribution of some sequences of integers represented by quadratic forms. We then take a closer look at friable values of irreducible cubic forms. Extending some previous works of Heath-Brown and Moroz concerning primes represented by such polynomials, we provide some asymptotic formulas which hold in a large range of friability. With this method, we also evaluate some means over the values of an irreducible cubic form for other multiplicative functions including the Möbius function and the Liouville function. In the last chapter, we investigate the correlations between nilsequences and the characteristic function of friable integers. By using the nilpotent method of Green and Tao, our work provides a formula for the number of friable integers represented by a product of affine forms such that any two forms are affinely independent
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zouari, Hichem. „Les entiers friables sous contraintes digitales“. Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0255.

Der volle Inhalt der Quelle
Annotation:
Cette thèse aborde plusieurs questions liées à la fonction somme des chiffres et aux entiers friables. Le premier chapitre est consacré à une introduction qui rassemble les origines des thèmes principaux abordés dans cette thèse, ainsi que les rappels théoriques et les notations nécessaires pour la suite du travail. Les principaux résultats obtenus au cours de cette recherche y seront également présentés. Le deuxième chapitre est consacré à l'étude des propriétés de l'ensemble ({ n leq x : n ext{ est } k ext{-libre}, , s_q(Q(n)) equiv a pmod{m} }), où ( a in mathbb{Z} ), ( k ), et ( m ) désignent des entiers naturels supérieurs ou égaux à 2. La fonction ( s_q ) représente la somme des chiffres en base ( q ), les entiers ( k )-libres sont ceux qui ne sont pas divisibles par la ( k )-ième puissance d'un nombre premier, et ( Q ) est un polynôme de degré supérieur ou égal à 2. Afin de montrer notre résultat principal, nous évaluons des sommes exponentielles du type (sum_{n leq x atop{ n ext{ est } k ext{-libre}}} e(alpha s_q(Q(n)))), où ( alpha ) est tel que ((q - 1)alpha in mathbb{R} setminus mathbb{Z}). À la fin, nous montrons un résultat d'équirépartition modulo 1. Le troisième chapitre se concentre sur l'équirépartition de Zeckendorf et la somme des chiffres des entiers friables dans des classes de congruence. Un entier est dit ( y )-friable si tous ses facteurs premiers sont inférieurs ou égaux à ( y ). Nous utiliserons systématiquement la notation ( P(n) ) pour désigner le plus grand facteur premier de ( n ), et ( S(x, y) := { n leq x : P(n) leq y } ) pour désigner l'ensemble des entiers ( y )-friables inférieurs ou égaux à ( x ). L'objectif principal de ce chapitre est d'évaluer l'ensemble ( { n in S(x, y) : s_varphi(n) equiv a pmod{m} } ), où ( a in mathbb{Z} ) et ( m ) désigne un entier naturel supérieur ou égal à 2. Ici, ( s_varphi ) est la fonction de la somme des chiffres en base Fibonacci. Comme nous le faisons dans le deuxième chapitre, pour prouver le résultat principal, nous utilisons les sommes exponentielles, ainsi, nous profiterons de la propriété de décomposition des entiers friables dans des intervalles pour nos démonstrations afin d'évaluer la somme exponentielle(sum_{n in S(x, y)} e(vartheta s_varphi(n))), où ( vartheta in mathbb{R} setminus mathbb{Z} ). Le quatrième chapitre porte sur la moyenne des sommes de certaines fonctions multiplicatives sur les entiers friables. Dans ce chapitre notre objectif est de déterminer des estimations pour les expressions suivantes : sigma_s(n) = sum_{d mid n} d^s, varphi(n) = sum_{d mid n} mu(d) n/d, et psi(n) = sum_{d mid n} mu^2(n/d) d, où ( s ) est un nombre réel non nul, lorsque n parcourt l'ensemble S(x,y). Le dernier chapitre présente une application de l'inégalité de Turán-Kubilius. Il est bien connu que cette inégalité traite des fonctions additives et qu'elle a également permis de démontrer le théorème de Hardy-Ramanujan pour la fonction additive (omega(n)), qui compte les diviseurs premiers de l'entier (n). Dans ce chapitre, nous nous déplaçons dans l'espace des entiers friables et nous nous intéressons à la fonction additive ilde{omega}(n) = sum_{p mid n atop{s_q(p) equiv a pmod{b}}} 1,où ( a in mathbb{Z} ) et ( b geq 2 ) sont des entiers. Nous fournissons une estimation de (ilde{omega}(n)), lorsque (n) parcourt l'ensemble (S(x,y)), puis nous utilisons l'inégalité de Turán-Kubilius dans l'espace des entiers friables proposée par Tenenbaum et de la Bretèche, et présentons quelques applications
This thesis addresses some questions related to the sum of digits function and friable integers. The first chapter is dedicated to an introduction that gathers the origins of the main topics covered in this thesis, as well as a background and the necessary notations for the rest of the work. The main results obtained during this research will also be presented. The second chapter focuses on the behaviour of the set ({ n leq x : n ext{ is } k ext{-free}, , s_q(Q(n)) equiv a pmod{m} }), where ( a in mathbb{Z} ), ( k ), and ( m ) are natural numbers greater than or equal to 2. The function ( s_q ) represents the sum of digits in base ( q ), ( k )-free integers are those not divisible by the ( k )-th power of a prime number, and ( Q ) is a polynomial of degree greater than or equal to 2. To show our main result, we evaluate exponential sums of the type(sum_{n leq x atop{ n ext{ is } k ext{-free}}} e(alpha s_q(Q(n)))), where ( alpha ) is a real number such that ((q - 1)alpha in mathbb{R} setminus mathbb{Z}). In the end, we establish an equidistribution result modulo 1. The third chapter, we focus on the distribution of the Zeckendorf sum of digits over friable integers in congruence classes. An integer is called ( y )-friable if all its prime factors are less than or equal to ( y ). We use the notation ( P(n) ) to denote the largest prime factor of ( n ), and ( S(x, y) := { n leq x : P(n) leq y } ) to denote the set of ( y )-friable integers less than or equal to ( x ). The main objective of this chapter is to evaluate the set ( { n in S(x, y) : s_varphi(n) equiv a pmod{m} } ), where ( a in mathbb{Z} ) and ( m ) is a natural number greater than or equal to 2. Here, ( s_varphi ) is the sum of digits function in the Fibonacci base. As in the second chapter, to prove the main result, we use exponential sums, and we utilize the property of decomposition of friable integers into intervals for our demonstration to evaluate the exponential sum(sum_{n in S(x, y)} e(vartheta s_varphi(n))), where ( vartheta in mathbb{R} setminus mathbb{Z} ). The fourth chapter deals with the average of sums of certain multiplicative functions over friable integers. In this chapter, our goal is to determine estimates for the following expressions: sigma_s(n) = sum_{d mid n} d^s, varphi(n) = sum_{d mid n} mu(d) n/d, and psi(n) = sum_{d mid n} mu^2(n/d) d, where ( s ) is a non-zero real number, when (n) runs over the set (S(x,y)). The last chapter presents an application of the Turán-Kubilius inequality. It is well known that this inequality deals with additive functions and has also been used to prove the Hardy-Ramanujan theorem for the additive function (omega(n)), which counts the prime divisors of the integer (n). In this chapter, we move into the space of friable integers and focus on the additive function ilde{omega}(n) = sum_{p mid n atop{s_q(p) equiv a pmod{b}}} 1, where ( a in mathbb{Z} ) and ( b geq 2 ) are integers. Firstly, we provide an estimate of ( ilde{omega}(n)) when (n) runs through the set (S(x,y)), we then use the Turán-Kubilius inequality in the space of friable integers established by Tenenbaum and de la Bretèche to present few applications
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Martin, Bruno. „Contribution à la théorie des entiers friables“. Phd thesis, Université de Lorraine, 2005. http://tel.archives-ouvertes.fr/tel-00795666.

Der volle Inhalt der Quelle
Annotation:
Un entier naturel est dit $y$-friable lorsque son plus grand facteur premier n'excède pas $y$. Ce travail est consacré à l'étude des entiers friables dans le cadre de la théorie analytique et probabiliste des nombres. La première partie est dévolue à un problème posé par Davenport en 1937, qui consiste à déterminer les conditions de validité de diverses généralisations de son développement de la fonction sinus en série de parties fractionnaires. Ces généralisations peuvent être décrites par un couple de fonctions arithmétiques, liées par la relation de convolution $f=g*\1$. Nous traitons le cas où $g$ est la fonction de Piltz d'ordre $z\in\CC$. La deuxième partie est consacrée à l'étude du comportement asymptotique de la constante optimale dans une version friable de l'inégalité de Turán-Kubilius. Précisant des résultats récents de La Bretèche et Tenenbaum, nous généralisons au cas friable une formule asymptotique de la variance d'une fonction arithmétique additive, établie par Hildebrand en 1983.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Drappeau, Sary. „Entiers friables en progressions arithmétiques, et applications“. Phd thesis, Université Paris-Diderot - Paris VII, 2013. http://tel.archives-ouvertes.fr/tel-00926351.

Der volle Inhalt der Quelle
Annotation:
Dans cette thèse, on s'intéresse à certaines propriétés additives des entiers n'ayant pas de grand facteurs premiers. Un entier est dit y-friable si tous ses facteurs premiers sont inférieurs à y. Leur étude est de plus en plus délicate à mesure que y est petit par rapport à la taille des entiers impliqués. On s'intéresse tout d'abord au comptage des solutions à l'équation a+b=c en entiers y-friables a, b et c On étudie ensuite la valeur moyenne de certaines fonctions arithmétiques sur les entiers friables translatés, de la forme n-1 où n est y-friable. La méthode du cercle permet de ramener la première question à l'étude de sommes de caractères de Dirichlet tordus par une exponentielle sur les entiers friables, qui sont ensuite évaluées en utilisant des outils classiques d'analyse harmonique, et en faisant intervenir la méthode du col. Les premier et deuxième chapitres étudient la situation respectivement avec et sans l'hypothèse de Riemann généralisée. Les troisième et quatrième chapitres sont consacrés à la seconde question, qui se ramène à l'étude de la répartition des entiers friables en moyenne dans les progressions arithmétiques. Cela met en jeu des sommes de caractères de Dirichlet sur les entiers friables, ainsi que le grand crible. Dans le dernier chapitre, la méthode de dispersion est employée pour étudier le cas particulier du nombre moyen de diviseurs des entiers friables translatés.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Drappeau, Sary. „Répartition des entiers friables dans les progressions arithmétiques et applications“. Paris 7, 2013. http://www.theses.fr/2013PA077138.

Der volle Inhalt der Quelle
Annotation:
Un entier est dit y-friable si tous ses facteurs premiers sont inférieurs ou égaux à y. Ils interviennent dans divers domaines de la théorie analytique des nombres. Cette thèse est portée sur l'étude de leur répartition dans les progressions arithmétiques, qui permet d'étudier des propriétés plus fines. Une première application est proposée au comptage des solutions de l'équation a+b=c en entiers friables, d'abord sous l'hypothèse de Riemann généralisée, puis inconditionnellement. Cela fait usage de la méthode du cercle pour ramener cela à l'estimation de sommes d'exponentielles, qui sont évaluées par la méthode du col. Ensuite sont étudiées quelques propriétés multiplicatives des entiers friables translatés, de la forme n-1 avec n entier friable : la valeur moyenne de certaines fonctions arithmétiques, le comportement statistique du nombre de leurs diviseurs, puis leur nombre moyen de facteurs premiers. Ces applications reposent sur des résultats d'équirépartition en moyenne de type Bombieri-Vinogradov. L'étude du nombre moyen de facteurs premiers, qui nécessite des calculs plus élaborés, est du ressort de la méthode de dispersion et fait appel à des majorations de sommes de Kloosterman
An integer is said tb be y-friable if all its prime factors are less than or equal to y. They are ubiquitous in analytic number theory. In this thesis we study their repartition in arithmetic progressions, which allows us to study more specific properties. This allows us to study the number of solutions to the equation a+b=c in friable numbers, at first assuming a generalization of the Riemann Hypothesis, then unconditionally. That makes use of the circle method to reduce die problem to die estimation of certain exponential sums, which are then evaluated using die saddle point method. In the second part, we study some multiplicative properties of shiftes friable integers, of the shape n-1 with n a friable integer : the mean value of some arithmetical functions, the statistical behaviour of the number of their divisors, and the average number of their prime factors. These applications rely on studying die equirepartition on average of friable numbers, and theorems of Bombieri-Vinogradov type. The study of the average number of prime factors of n-1 (n: friable integer) needs a more involved study, and relies on the dispersion method and bounds for Kloosterman sums
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Basquin, Joseph. „Trois études autour de sommes de fonctions multiplicatives sur les entiers friables“. Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0148/document.

Der volle Inhalt der Quelle
Annotation:
Ce travail est consacré à l'étude de trois problèmes liés à l'évaluation de sommes de fonctions multiplicatives sur les entiers friables. On dit qu'un nombre entier n est y-friable si son plus grand facteur premier P(n) n'excède pas y. Dans une première partie, nous considérons une fonction multiplicative aléatoire au sens de Wintner, c'est-à-dire une fonction arithmétique multiplicative f supportée par les entiers sans facteur carré, telle que, pour tout entier premier p, f(p) est une variable aléatoire de Bernoulli prenant les valeurs +1 et -1 avec probabilité 1/2. Dans la continuité de travaux de Wintner, Erdös, Halasz, Lau, Tenenbaum et Wu, notre étude est dédiée à l'obtention d'une majoration presque sûre de la fonction sommatoire de f sur les entiers y-friables n'excédant pas x. Un second volet est dévolu à l'évaluation asymptotique des fonctions sommatoires de certaines fonctions multiplicatives, notamment la fonction phi d'Euler, sur les translatés des entiers friables. La méthode employée fait appel à des résultats de répartition des entiers friables dans les progressions arithmétiques. La troisième partie consiste en une étude de la loi moyenne de répartition des diviseurs des entiers friables. Nous établissons le glissement, lorsque le paramètre de friabilité u = (log x)/log y croît, depuis la loi de l'arcsinus (établie en 1979 dans les travaux de Dress, Deshouillers et Tenenbaum) jusqu'à une loi approximativement gaussienne. La loi limite obtenue s'exprime au moyen d'une convolution faisant apparaître les fonctions de Dickman
This dissertation is devoted to studying three problems, all linked to estimates for sums of multiplicative functions over friable integers. An integer n is called y-friable if its largest prime factor P(n) does not exceed y. In a first part, we consider a random multiplicative function in the sense of Wintner, i.e. a multiplicative arithmetic function f supported on squarefree integers and such that, for each prime p, f(p) is a Bernoulli random variable taking each value +1 and -1 with probability 1/2. Elaborating on previous works by Wintner, Erdös, Halasz, Lau, Tenenbaum and Wu, we investigate upper bounds for the summatory function of f over y-friable integers not exceeding x. In the second part, we provide asymptotic estimates for sums of certain multiplicative functions, including Euler's totient, over shifted friable integers. This study depends on the distribution of friable integers in arithmetic progressions. In the third part, we consider a friable extension of the Arcsine law for the mean distribution of the divisors of integers. The original study is due to Deshouillers, Dress and Tenenbaum (1979). We describe the limit law in terms of the Dickman functions and we show that, as the friability parameter u = (log x)/log y increases, the mean distribution drifts from the Arcsine law towards a Gaussian behaviour
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Basquin, Joseph. „Trois études autour de sommes de fonctions multiplicatives sur les entiers friables“. Electronic Thesis or Diss., Université de Lorraine, 2012. http://www.theses.fr/2012LORR0148.

Der volle Inhalt der Quelle
Annotation:
Ce travail est consacré à l'étude de trois problèmes liés à l'évaluation de sommes de fonctions multiplicatives sur les entiers friables. On dit qu'un nombre entier n est y-friable si son plus grand facteur premier P(n) n'excède pas y. Dans une première partie, nous considérons une fonction multiplicative aléatoire au sens de Wintner, c'est-à-dire une fonction arithmétique multiplicative f supportée par les entiers sans facteur carré, telle que, pour tout entier premier p, f(p) est une variable aléatoire de Bernoulli prenant les valeurs +1 et -1 avec probabilité 1/2. Dans la continuité de travaux de Wintner, Erdös, Halasz, Lau, Tenenbaum et Wu, notre étude est dédiée à l'obtention d'une majoration presque sûre de la fonction sommatoire de f sur les entiers y-friables n'excédant pas x. Un second volet est dévolu à l'évaluation asymptotique des fonctions sommatoires de certaines fonctions multiplicatives, notamment la fonction phi d'Euler, sur les translatés des entiers friables. La méthode employée fait appel à des résultats de répartition des entiers friables dans les progressions arithmétiques. La troisième partie consiste en une étude de la loi moyenne de répartition des diviseurs des entiers friables. Nous établissons le glissement, lorsque le paramètre de friabilité u = (log x)/log y croît, depuis la loi de l'arcsinus (établie en 1979 dans les travaux de Dress, Deshouillers et Tenenbaum) jusqu'à une loi approximativement gaussienne. La loi limite obtenue s'exprime au moyen d'une convolution faisant apparaître les fonctions de Dickman
This dissertation is devoted to studying three problems, all linked to estimates for sums of multiplicative functions over friable integers. An integer n is called y-friable if its largest prime factor P(n) does not exceed y. In a first part, we consider a random multiplicative function in the sense of Wintner, i.e. a multiplicative arithmetic function f supported on squarefree integers and such that, for each prime p, f(p) is a Bernoulli random variable taking each value +1 and -1 with probability 1/2. Elaborating on previous works by Wintner, Erdös, Halasz, Lau, Tenenbaum and Wu, we investigate upper bounds for the summatory function of f over y-friable integers not exceeding x. In the second part, we provide asymptotic estimates for sums of certain multiplicative functions, including Euler's totient, over shifted friable integers. This study depends on the distribution of friable integers in arithmetic progressions. In the third part, we consider a friable extension of the Arcsine law for the mean distribution of the divisors of integers. The original study is due to Deshouillers, Dress and Tenenbaum (1979). We describe the limit law in terms of the Dickman functions and we show that, as the friability parameter u = (log x)/log y increases, the mean distribution drifts from the Arcsine law towards a Gaussian behaviour
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Feutrie, David. „Sur deux questions de crible“. Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0173.

Der volle Inhalt der Quelle
Annotation:
Cette thèse se divise en deux grandes parties. Le premier chapitre porte sur l’étude du nombre des entiers n’excédant pas x et n’admettant aucun diviseur dans une progression arithmétique a(mod q) donnée. Nous améliorons ici un résultat de Narkiewicz et Radziejewski de 2011 en fournissant une expression différente et plus simple du terme principal et en précisant le terme d’erreur. Les outils principaux sont la méthode de Selberg-Delange et le contour de Hankel. Nous étudions plus en détail le cas particulier où a n’est pas un résidu quadratique modulo q. Nous étendons également notre résultat aux entiers n’admettant aucun diviseur dans un ensemble fini de classes résiduelles modulo q. Le second chapitre est consacré aux entiers ultrafriables dans les progressions arithmé- tiques. Un entier y-ultrafriable est un entier dont toutes les puissances de nombres premiers qui le divisent sont inférieures à y. Nous commençons par étudier la fonction de comptage des ces entiers lorsqu’ils sont premiers à un entier q. Nous donnons ensuite des formules asymptotiques sur le nombre d’entiers y-ultrafriables inférieurs à un entier x et dans une progression arith- métique a modulo q, où q est un module y-friable, c’est-à-dire sans facteur premier supérieur à y. Nos résultats sont valables pour des entiers q, x, y tels que log x « y < x, q < yc/ log log y, où c > 0 est une constante choisie convenablement
This thesis is divided into two main parts. In the first chapter, we consider the number of integers not exceeding x and admitting no divisor in an arithmetic progression a(mod q) where q is fixed. We improve here a result of Narkiewicz and Radziejewski published in 2011 by providing a different main term with a simpler expression, and we specify the term error. The main tools are the Selberg-Delange method and the Hankel contour. We also study in detail the particular case where a is a quadratic nonresidue modulo q. We also extend our result to the integers which admit no divisor in a finite set of residual classes modulo q. In the second chapter, we study the ultrafriable integers in arithmetic progressions. An integer is said to be y-ultrafriable if no prime power which divide it exceeds y. We begin with the studying of the counting function of these integers when they are coprime to q. Then we give an asymptotic formula about the number of y-ultrafriable integers which don’t exceed a number x and in an arithmetic progression a modulo q, where q is a y-friable modulus, which means that it is without a prime divisor exceeding y. Our results are valid when q, x, y are integers which verify log x « y < x, q < yc/ log log y, where c > 0 is a suitably chosen constant
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, Zhiwei. „Les plus grands facteurs premiers d’entiers consécutifs“. Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0022/document.

Der volle Inhalt der Quelle
Annotation:
Dans cette thèse, on s'intéresse aux plus grands facteur premiers d'entiers consécutifs. Désignons par $P^+(n)$ (resp. $P^-(n)$) le plus grand (resp. plus petit) facteur premier d'un entier générique $n\geq 1$ avec la convention que $P^+(1)=1$ (resp. $P^-(1)=\infty$). Dans le premier chapitre, nous étudions les plus grands facteurs premiers d'entiers consécutifs dans les petits intervalles. Nous démontrons qu'il existe une proportion positive d'entiers $n$ tels que $P^+(n)P^+(n+1)$. Dans le deuxième chapitre, nous nous intéressons à la fonction $P_y^+(n)$, où $P_y^+(n)=\max\{p|n:\, p\leq y\}$ et $2\leq y\leq x.$ Nous montrons qu'il existe une proportion positive d'entiers $n$ tels que $P_y^+(n)P^+(n)P^+(n+1)$ ont lieu pour une proportion positive d'entiers $n$, en utilisant le système de poids bien adapté que l'on a introduit dans le Chapitre 2. De façon similaire, on peut obtenir un résultat plus général pour $k$ entiers consécutifs, $k\in \mathbb{Z}, k\geq3$. Dans le quatrième chapitre, on étudie les plus grands facteurs premiers d'entiers consécutifs voisins d'un entier criblé. Sous la conjecture d'Elliott-Halberstam, nous montrons d'abord que la proportion de la configuration $P^+(p-1)x^{\beta}$ avec $0<\beta<\frac{1}{3}$
In this thesis, we study the largest prime factors of consecutive integers. Denote by $P^+(n)$ (resp. $P^-(n)$) the largest (resp. the smallest) prime factors of the integer $n\geq 1$ with the convention $P^+(1)=1$ (resp. $P^-(1)=\infty$). In the first chapter, we consider the largest prime factors of consecutive integers in short intervals. We prove that there exists a positive proportion of integers $n$ for $n\in\, (x,\, x+y]$ with $y=x^{\theta}, \tfrac{7}{12}<\theta\leq 1$ such that $P^+(n)P^+(n+1)$. In the second chapter, we consider the function $P_y^+(n)$, where $P_y^+(n)=\max\{p|n:\, p\leq y\}$ and $2\leq y\leq x$. We prove that there exists a positive proportion of integers $n$ such that $P_y^+(n)P^+(n)P^+(n+1)$ occur for a positive proportion of integers $n$ respectively, by the well adapted system of weights that we have developed in the second chapter. With the same method, we derive a more general result for $k$ consecutive integers, $k\in \mathbb{Z}, k\geq 3$. In the fourth chapter, we study the largest prime factors of consecutive integers with one of which without small prime factor. Firstly we show that under the Elliott-Halberstam conjecture, the proportion of the pattern $P^+(p-1)x^{\beta}$ with $0<\beta<\frac{1}{3}$
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Col, Sylvain. „Propriétés multiplicatives d'entiers soumis à des conditions digitales“. Phd thesis, Université Henri Poincaré - Nancy I, 1996. http://tel.archives-ouvertes.fr/tel-00339809.

Der volle Inhalt der Quelle
Annotation:
Pour une base fixée, les entiers ellipséphiques (c'est-à-dire les entiers dont l'écriture n'utilise que certains chiffres) et les palindromes forment des sous ensembles éparses des entiers, ensembles définis par des conditions digitales. Nous étudions si ces ensembles ont des propriétés multiplicatives similaires à celles des entiers.
Nous évaluons d'abord les grands moments de la série génératrice des entiers ellipséphiques. Comme application, nous en déduisons l'existence d'un 0 < c < 1 tel que pour tout entier k, une infinité d'entiers ellipséphiques n possédant un diviseur p^k de l'ordre de n^c, p désignant un nombre premier. De plus, le nombre de tels entiers est de l'ordre de grandeur attendu.
Nous établissons ensuite un résultat de crible où les modules possédant un nombre anormalement grand de diviseurs sont écartés du terme d'erreur. Nous en déduisons l'existence d'une proportion positive d'entiers ellipséphiques friables c'est-à-dire possédant tous leurs facteurs premiers majorés par n^c, pour une constante c < 1 fixée.
Nous montrons enfin à l'aide de techniques élémentaires comment réduire l'étude de la série génératrice des palindromes à une série proche de celle des entiers ellipséphiques ce qui permet d'étudier la répartition des palindromes dans les progressions arithmétiques et ainsi d'obtenir une majoration de l'ordre de grandeur attendu du nombre de palindromes premiers. Nous en déduisons en particulier l'existence d'une infinité de palindromes possédant en base 10 au plus 372 facteurs premiers (comptés avec multiplicité).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Barbulescu, Razvan. „Algorithmes de logarithmes discrets dans les corps finis“. Electronic Thesis or Diss., Université de Lorraine, 2013. http://www.theses.fr/2013LORR0183.

Der volle Inhalt der Quelle
Annotation:
Dans cette thèse nous examinons en détail le problème du logarithme discret dans les corps finis. Dans la première partie, nous nous intéressons à la notion de friabilité et à l'algorithme ECM, le plus rapide test de friabilité connu. Nous présentons une amélioration de l'algorithme en analysant les propriétés galoisiennes des polynômes de division. Nous continuons la présentation par une application d'ECM dans la dernière étape du crible algébrique (NFS). Dans la deuxième partie, nous présentons NFS et son algorithme correspondant utilisant les corps de fonctions (FFS). Parmi les améliorations examinées, nous montrons qu'on peut accélérer le calcul de logarithme discret au prix d'un pré-calcul commun pour une plage de premiers ayant le même nombre de bits. Nous nous concentrons ensuite sur la phase de sélection polynomiale de FFS et nous montrons comment comparer des polynômes quelconques à l'aide d'une unique fonction. Nous concluons la deuxième partie avec un algorithme issu des récentes améliorations du calcul de logarithme discret. Le fait marquant est la création d'une procédure de descente qui a un nombre quasi-polynomial de noeuds, chacun exigeant un temps polynomial. Cela a conduit à un algorithme quasi-polynomial pour les corps finis de petite caractéristique
In this thesis we study at length the discrete logarithm problem in finite fields. In the first part, we focus on the notion of smoothness and on ECM, the fastest known smoothness test. We present an improvement to the algorithm by analyzing the Galois properties of the division polynomials. We continue by an application of ECM in the last stage of the number field sieve (NFS). In the second part, we present NFS and its related algorithm on function fields (FFS). We show how to speed up the computation of discrete logarithms in all the prime finite fields of a given bit-size by using a pre-computation. We focus later on the polynomial selection stage of FFS and show how to compare arbitrary polynomials with a unique function. We conclude the second part with an algorithm issued from the recent improvements for discrete logarithm. The key fact was to create a descent procedure which has a quasi-polynomial number of nodes, each requiring a polynomial time. This leads to a quasi-polynomial algorithm for finite fields of small characteristic
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Goudout, Elie. „Étude de la fonction ω : petits intervalles et systèmes translatés“. Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC040.

Der volle Inhalt der Quelle
Annotation:
Dans cette thèse, on s’intéresse à l’interaction entre les structures multiplicative et additive des entiers. Pour cela, on étudie notamment la fonction « nombre de facteurs premiers distincts », notée ω, dans de très petits intervalles, mais aussi sur des systèmes translatés. Ce projet est né suite à une importante percée de Matomäki & Radziwiłł dans l’étude des petits intervalles, en 2015. Dans un premier temps, on démontre que le théorème d’Erdős-Kac est vérifié dans presque tous les petits intervalles, dès lors que leur taille tend vers l’infini. On s’intéresse ensuite aux lois locales de la fonction ω. On parvient à démontrer, lorsque , que presque tous les intervalles de longueur h contiennent des entiers n6x vérifiant ω(n) = k, dès que h est suffisamment grand. Lorsque , la condition sur h est optimale. On obtient un résultat analogue, bien que non optimal, sur les entiers x1/u-friables pour u6 (logx)1/6−ε, où ε> 0 peut être fixé arbitrairement petit. Les méthodes employées dans le deuxième chapitre invitent naturellement à étudier le comportement de certaines fonctions additives sur des systèmes d’entiers translatés. On démontre alors, dans un troisième temps, une version multidimensionnelle d’un théorème de 1975 dû à Halász, relatif à la concentration maximale des valeurs d’une seule fonction additive. Enfin, dans le quatrième chapitre, on démontre que ω(n−1) vérifie un théorème d’ErdősKac lorsque ω(n) = k est fixé. Cela généralise un résultat d’Halberstam
In this thesis, we study the interactions between the multiplicative and additive structures of integers. As such, we particularly investigate the function “number of distinct prime factors”, noted ω, on short intervals and shifted systems. This project originates from an important breakthrough of Matomäki & Radziwiłł regarding the study of small intervals, in 2015. As a first step, we show that the Erdős-Kac theorem is valid in almost all short intervals, as long as their length goes to infinity. We then consider the local laws of ω. We prove that, for x> 3 and , almost all intervals of length h contain integers n 6 x satisfying ω(n) = k, when h is large enough. For , the condition on h is optimal. A similar result, albeit non optimal, is obtained for x1/u-friable integers with u 6 (logx)1/6−ε, where ε > 0 is fixed, arbitrarily small. The techniques used in the second chapter naturally invite us to consider the behavior of a wide class of additive functions on shifted systems. In the third chapter, we prove a multidimensional version of a theorem from Halász in 1975, regarding the maximum concentration of the values of one additive function. In the last chapter, we show that ω(n− 1) satisfies an Erdős-Kac theorem whenever ω(n) = k is fixed. This generalizes a theorem of Halberstam
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Barbulescu, Razvan. „Algorithmes de logarithmes discrets dans les corps finis“. Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00925228.

Der volle Inhalt der Quelle
Annotation:
Dans cette thèse nous examinons en détail le problème du logarithme discret dans les corps finis. Dans la première partie, nous nous intéressons à la notion de friabilité et à l'algorithme ECM, le plus rapide test de friabilité connu. Nous présentons une amélioration de l'algorithme en analysant les propriétés galoisiennes des polynômes de division. Nous continuons la présentation par une application d'ECM dans la dernière étape du crible algébrique (NFS). Dans la deuxième partie, nous présentons NFS et son algorithme correspondant utilisant les corps de fonctions (FFS). Parmi les améliorations examinées, nous montrons qu'on peut accélérer le calcul de logarithme discret au prix d'un pré-calcul commun pour une plage de premiers ayant le même nombre de bits. Nous nous concentrons ensuite sur la phase de sélection polynomiale de FFS et nous montrons comment comparer des polynômes quelconques à l'aide d'une unique fonction. Nous concluons la deuxième partie avec un algorithme issu des récentes améliorations du calcul de logarithme discret. Le fait marquant est la création d'une procédure de descente qui a un nombre quasi-polynomial de nœuds, chacun exigeant un temps polynomial. Cela a conduit à un algorithme quasi-polynomial pour les corps finis de petite caractéristique.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Wang, Zhiwei. „Les plus grands facteurs premiers d’entiers consécutifs“. Electronic Thesis or Diss., Université de Lorraine, 2018. http://www.theses.fr/2018LORR0022.

Der volle Inhalt der Quelle
Annotation:
Dans cette thèse, on s'intéresse aux plus grands facteur premiers d'entiers consécutifs. Désignons par P^+(n) (resp. P^-(n) le plus grand (resp. plus petit) facteur premier d'un entier générique n\geq 1 avec la convention que P^+(1)=1 (resp. P^-(1)=\∞). Dans le premier chapitre, nous étudions les plus grands facteurs premiers d'entiers consécutifs dans les petits intervalles. Nous démontrons qu'il existe une proportion positive d'entiers n tels que P^+(n)P^+(n+1). Dans le deuxième chapitre, nous nous intéressons à la fonction P_y^+(n), où P_y^+(n)=\max\{p|n:\, p\leq y\} et 2\leq y\leq x. Nous montrons qu'il existe une proportion positive d'entiers n tels que P_y^+(n)P^+(n)P^+(n+1) ont lieu pour une proportion positive d'entiers n, en utilisant le système de poids bien adapté que l'on a introduit dans le Chapitre 2. De façon similaire, on peut obtenir un résultat plus général pour k entiers consécutifs, k\in \mathbb{Z}, k\geq3. Dans le quatrième chapitre, on étudie les plus grands facteurs premiers d'entiers consécutifs voisins d'un entier criblé. Sous la conjecture d'Elliott-Halberstam, nous montrons d'abord que la proportion de la configuration P^+(p-1)x^{\beta} avec 0<\beta<\frac{1}{3}
In this thesis, we study the largest prime factors of consecutive integers. Denote by P^+(n) (resp. P^-(n)) the largest (resp. the smallest) prime factors of the integer n\geq 1 with the convention P^+(1)=1 (resp. P^-(1)=\∞). In the first chapter, we consider the largest prime factors of consecutive integers in short intervals. We prove that there exists a positive proportion of integers n for n\in\, (x,\, x+y] with y=x^{\theta}, \tfrac{7}{12}<\theta\leq 1 such that P^+(n)P^+(n+1). In the second chapter, we consider the function P_y^+(n), where P_y^+(n)=\max\{p|n:\, p\leq y\} and 2\leq y\leq x. We prove that there exists a positive proportion of integers n such that P_y^+(n)P^+(n)P^+(n+1) occur for a positive proportion of integers n respectively, by the well adapted system of weights that we have developed in the second chapter. With the same method, we derive a more general result for k consecutive integers, k\in \mathbb{Z}, k\geq 3. In the fourth chapter, we study the largest prime factors of consecutive integers with one of which without small prime factor. Firstly we show that under the Elliott-Halberstam conjecture, the proportion of the pattern P^+(p-1)x^{\beta} with 0<\beta<\frac{1}{3}
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Mehdizadeh, Marzieh. „Anatomy of smooth integers“. Thèse, 2017. http://hdl.handle.net/1866/19299.

Der volle Inhalt der Quelle
Annotation:
Dans le premier chapitre de cette thèse, nous passons en revue les outils de la théorie analytique des nombres qui seront utiles pour la suite. Nous faisons aussi un survol des entiers y−friables, c’est-à-dire des entiers dont chaque facteur premier est plus petit ou égal à y. Au deuxième chapitre, nous présenterons des problèmes classiques de la théorie des nombres probabiliste et donnerons un bref historique d’une classe de fonctions arithmétiques sur un espace probabilisé. Le problème de Erdos sur la table de multiplication demande quel est le nombre d’entiers distincts apparaissant dans la table de multiplication N × N. L’ordre de grandeur de cette quantité a été déterminé par Kevin Ford (2008). Dans le chapitre 3 de cette thèse, nous étudions le nombre d’ensembles y−friables de la table de multiplication N × N. Plus concrètement, nous nous concentrons sur le changement du comportement de la fonction A(x, y) par rapport au domaine de y, où A(x, y) est une fonction qui compte le nombre d’entiers y− friables distincts et inférieurs à x qui peuvent être représentés comme le produit de deux entiers y− friables inférieurs à p x. Dans le quatrième chapitre, nous prouvons un théorème de Erdos-Kac modifié pour l’ensemble des entiers y− friables. Si !(n) est le nombre de facteurs premiers distincts de n, nous prouvons que la distribution de !(n) est gaussienne pour un certain domaine de y en utilisant la méthode des moments.
The object of the first chapter of this thesis is to review the materials and tools in analytic number theory which are used in following chapters. We also give a survey on the development concerning the number of y−smooth integers, which are integers free of prime factors greater than y. In the second chapter, we shall give a brief history about a class of arithmetical functions on a probability space and we discuss on some well-known problems in probabilistic number theory. We present two results in analytic and probabilistic number theory. The Erdos multiplication table problem asks what is the number of distinct integers appearing in the N × N multiplication table. The order of magnitude of this quantity was determined by Kevin Ford (2008). In chapter 3 of this thesis, we study the number of y−smooth entries of the N × N multiplication. More concretely, we focus on the change of behaviour of the function A(x,y) in different ranges of y, where A(x,y) is a function that counts the number of distinct y−smooth integers less than x which can be represented as the product of two y−smooth integers less than p x. In Chapter 4, we prove an Erdos-Kac type of theorem for the set of y−smooth integers. If !(n) is the number of distinct prime factors of n, we prove that the distribution of !(n) is Gaussian for a certain range of y using method of moments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie