Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Les cellules souches intestinales“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Les cellules souches intestinales" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Les cellules souches intestinales"
Joubert, Dominique, Frédéric Hollande, Philippe Jay und Catherine Legraverend. „Les cellules souches intestinales“. médecine/sciences 25, Nr. 5 (Mai 2009): 441–44. http://dx.doi.org/10.1051/medsci/2009255441.
Der volle Inhalt der QuelleAndreu, Pauline, Christine Perret und Béatrice Romagnolo. „Wnt et cellules souches intestinales : des liaisons dangereuses…“. médecine/sciences 22, Nr. 8-9 (August 2006): 693–95. http://dx.doi.org/10.1051/medsci/20062289693.
Der volle Inhalt der QuelleThevin, Valentin, und Saidi Soudja. „Le dialogue entre les cellules souches intestinales et les lymphocytes T CD4+ module l’homéostasie des cellules souches“. médecine/sciences 36, Nr. 1 (Januar 2020): 69–72. http://dx.doi.org/10.1051/medsci/2019175.
Der volle Inhalt der QuelleGerbe, F., M. Escobar, B. Brulin, L. Makrini, C. Legraverend und P. Jay. „R30: Cellules souches et tumorigenèse intestinale“. Bulletin du Cancer 97, Nr. 4 (Oktober 2010): S27. http://dx.doi.org/10.1016/s0007-4551(15)30947-4.
Der volle Inhalt der QuelleDougé, Aurore, Jacques-Olivier Bay, Aurélie Ravinet und Julien Scanzi. „Microbiote intestinal et allogreffe de cellules souches hématopoïétiques“. Bulletin du Cancer 107, Nr. 1 (Januar 2020): 72–83. http://dx.doi.org/10.1016/j.bulcan.2019.08.014.
Der volle Inhalt der QuelleRomagnolo, Béatrice. „Une relation Paneth entre cellules souches et niche intestinale“. médecine/sciences 28, Nr. 12 (Dezember 2012): 1058–60. http://dx.doi.org/10.1051/medsci/20122812013.
Der volle Inhalt der QuelleSalthun-Lassalle, Bénédicte. „Cellules souches“. Cerveau & Psycho N° 93, Nr. 10 (10.01.2017): 12–13. http://dx.doi.org/10.3917/cerpsy.093.0012.
Der volle Inhalt der QuelleGirard, M. „Cellules souches“. Annales d'Endocrinologie 74, Nr. 4 (September 2013): 249. http://dx.doi.org/10.1016/j.ando.2013.07.054.
Der volle Inhalt der QuelleChazaud, Bénédicte. „Cellules satellites et cellules souches musculaires“. Les Cahiers de Myologie, Nr. 17 (Juni 2018): 11–14. http://dx.doi.org/10.1051/myolog/201817003.
Der volle Inhalt der QuelleSensebé, Luc, und Philippe Bourin. „Cellules souches mésenchymateuses“. médecine/sciences 27, Nr. 3 (März 2011): 297–302. http://dx.doi.org/10.1051/medsci/2011273297.
Der volle Inhalt der QuelleDissertationen zum Thema "Les cellules souches intestinales"
Auclair, Joëlle. „Étude des interactions cellule-matrice dans l'ancrage des cellules souches intestinales humaines“. Mémoire, Université de Sherbrooke, 2005. http://savoirs.usherbrooke.ca/handle/11143/3795.
Der volle Inhalt der QuelleAuclair, Joëlle. „Étude des interactions cellule-matrice dans l'ancrage des cellules souches intestinales humaines“. [S.l. : s.n.], 2005.
Den vollen Inhalt der Quelle findenTrentesaux, Coralie. „Rôles de l’autophagie dans l'homéostasie des cellules souches intestinales“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS361.
Der volle Inhalt der QuelleThe renewal of the intestinal epithelium relies on the continuous proliferation of stem cells capable of regenerating the entire epithelium every 3 to 5 days. These intestinal stem cells (ISC) are thought to be the cell of origin for colorectal cancer. Thus, characterizing the mechanisms involved the protection of ISC against different stresses is key to understanding both intestinal homeostasis and tumor development. In tumoral tissue from mice predisposed to intestinal tumor development following the loss of the tumor suppressor gene Apc, our laboratory previously showed an upregulation of autophagy required for tumor growth. Our work aims to understand the role this catabolic mechanism in the homeostasis of ISC. To this end, we use genetically modified mouse models and intestinal organoid culture to study the effects of autophagy inhibition in intestinal homeostasis and in particular in ISC.We found that the inhibition of autophagy upon deletion of the gene Atg7 results in p53 activation and apoptosis of ISC specifically. The simultaneous deletion of Tp53 prevents the death of autophagy-deficient ISC. Moreover, over time, mice deficient for both Atg7 and Tp53 develop tumors, contrary to those deficient for either Atg7 or Tp53 alone. We therefore hypothesized that the inhibition of autophagy sensitizes ISC to p53-mediated apoptosis as a result of accumulated pro-tumorigenic damages. Transcriptomic analysis on sorted control or Atg7-deficient ISC revealed aterations in oxidative stress and DNA damage responses. Confirming these signatures, we observed DNA damages in autophagy-deficient crypts along with a defect in the repair of induced damages following irradiation. We additionally observed an accumulation of reactive oxygen species in autophagy-deficient ISC linked to a downregulation of the NRF2-mediated antioxidant response. Wide-spectrum antibiotic or antioxidant treatments improve the survival of autophagy-deficient ISC and support the contribution of both reactive oxygen species and the intestinal microbiota to the death of ISC. Our work therefore reveals we find an important function of autophagy in the integrity and maintenance of ISC by controlling reactive oxygen species, the microbial microenvironment and DNA repair pathways
Beucher, Anthony. „Plasticité et reprogrammation des cellules intestinales“. Strasbourg, 2009. http://www.theses.fr/2009STRA6176.
Der volle Inhalt der QuellePancreatic and intestinal endocrine cells share many molecular, cellular and functional characteristics. Particularly, their differentiation during embryogenesis relies on similar genetic programs controlled by the proendocrine transcription factor Neurog3. Therefore, our hypothesis is that intestinal stem or progenitor cells can be coaxed to generate pancreatic endocrine cells such as insulin-producing beta cells. To test this hypothesis we explored the plasticity of mouse intestinal Neurog3+ progenitors in vivo and ex vivo and investigated the possibility to program beta cells from intestinal cells. Using a lineage tracing approach, we showed that, in vivo, intestinal Neurog3+ progenitors are multipotent but surprisingly give rise mainly to goblet cells and to a lower extend to enteroendocrine and Paneth cells. Furthermore, we demonstrated that a pancreatic environment was not sufficient to promote an islet cell fate to purified intestinal Ngn3 progenitor cells and divert them from their enteroendocrine destiny. Finally, we showed that the infection of the undifferentiated mIC-cl2 intestinal cell line with a combination of adenoviruses encoding Pdx1, Neurog3 and Mafa, key transcription factors controlling beta cell differentiation, lead to the induction of the insulin gene but was not sufficient to generate hormone producing beta cells. Consequently additional studies are required to further support the relevance of intestinal cells to generate surrogate beta cells for a cell replacement therapy in type 1 diabetes
Al-Zoubi, Lara. „Mécanismes de perte d'hétérozygotie dans les cellules souches adultes“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2020. https://theses.hal.science/tel-03598037.
Der volle Inhalt der QuelleSometimes a somatic cell undergoes an alteration of its genome leading to loss of heterozygosity (LOH). This phenomenon occurs in normal human tissues, pathological disorders, and cancers. Although previous studies in yeast have provided substantial insight into different mechanisms of LOH, mechanistic details are lacking in higher eukaryotes. Here we investigated the mechanisms giving rise to LOH, bridging the gap between unicellular yeast and higher eukaryotes using an in vivo stem cell model system in Drosophila. Our previous studies have shown that LOH arises frequently in Drosophila intestinal stem cells, and that spontaneous neoplasia arise due to LOH of tumour suppressor genes (Siudeja, 2015). Though whole-genome sequencing of somatic LOH events and profiling copy number changes and changes in heterozygosity of single-nucleotide polymorphisms, we demonstrated that LOH arises through mitotic recombination. Consistent with this, we found Rad51 to be implicated in LOH. Fine mapping of recombination sites did not reveal mutational pile-ups that commonly arise with a break-induced replication mechanism and instead showed clear examples of chromosomes resulting from cross-over resulting from double-Holliday junction-based repair. The mapped recombination regions also provided insight into potential genomic sequence features that may promote mitotic recombination, including an association with the repeated region of the Histone Locus Cluster and regions previously mapped to form R loops. We further explored how environmental factors can influence this process and demonstrate that infection with the enteric pathogenic bacteria, Ecc15, increased LOH frequency. This study provides a better mechanistic understanding of how mitotic recombination arises in stem cells in vivo, and identifies intrinsic and extrinsic factors that can drive LOH, thus providing important insight into cancer initiation and potential preventative and therapeutic strategies
Nguyen, Julie. „Rôle du facteur de transcription Sox9 dans l'homéostasie et la tumorigenèse intestinales“. Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTT046.
Der volle Inhalt der QuelleThe intestinal homeostasis maintenance involves a permanent crosstalk between the epithelium, the microbiota and the immune system. ISC are responsible for the intestine renewal and regeneration, but they can also cause intestinal tumors. The Sox9 transcription factor is an interesting candidate as a key regulator of intestinal homeostasis because of its specific expression in ISC, Paneth cells and tuft cells. In addition, Sox9 is essential for the differentiation of Paneth cells since the loss of Sox9 in the mouse embryo (model Sox9LoxP / LoxP, Villin-Cre) leads to the absence of Paneth cells. First, we analysed the function of Sox9 in the adult intestinal epithelium using the inducible mouse model: Sox9LoxP / LoxP; Villin-CreERT2. We demonstrated that the deletion of Sox9 in adult Paneth cells leads to structural and functional alterations of Paneth cells, which induce alterations of bacterial diversity (dysbiosis). Dysbiosis is "sensed" by tuft cells that initiate a type 2 immune response. This study revealed the key role of Sox9 in adult Paneth cells to regulate intestinal homeostasis, thus preventing the establishment of a proinflammatory microbiota. Tuft cells, via their sensing function, are able to modulate mucosal immunity in response to a dysbiosis and thus participate in the formation of a vicious circle. In addition, we studied the biology of ISC, by integrating the contribution of Paneth cells properties that participate in the establishment of the niche. We analysed the properties of stem cells in a healthy context or during tumor initiation. Our data indicate that in a healthy context, Sox9 is required for the regulation of ISC fate, namely the balance between ISC self-renewal and differentiation. The mechanisms regulated by Sox9 involve cellular metabolism, a key player in the stem cells fate. Our work shows that an intact niche maintenance is necessary to control ISC fate. The deletion of Sox9 alters mitochondrial integrity and promotes mitochondrial ROS production that could modulate the ISC fate toward a differentiated state. In parallel, we demonstrated that Sox9 deletion concomitant with the acquisition of an initiating event such as the loss of function of the tumor suppressor gene Apc, affects the CSC and their cellular metabolism. The evaluation of the role of the Sox9 transcription factor in the control of metabolic homeostasis will provide a better understanding of the regulatory mechanisms in ISC biology, and eventually new therapeutic strategies targeting CSC might be proposed
Cho, Julio Cesar. „Criblage aux petites molécules dans un modèle de cellules souches tumorales chez la drosophila“. Paris 6, 2011. http://www.theses.fr/2011PA066128.
Der volle Inhalt der QuelleBruschi, Marco. „DNA methylation dynamics and its functional impact during the early stages of intestinal tumorigenesis“. Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT066/document.
Der volle Inhalt der QuelleCancer initiation and progression represent the outcome of the progressive accumulation of genetic and epigenetic alterations. Global changes in the epigenome are now considered as a common hallmark of malignancies. However, most of our present knowledge represents the result of the comparison between fully established malignancies and their surrounding healthy tissue. Such comparison is not informative about the epigenetic contribution to the very early steps of cancer onset. By performing DNA methylation and gene expression profiling of the intestinal epithelium of relevant in vivo models we aim at shedding light on the correlation between the interindividual epigenetic polymorphisms within the population and the relative risk to develop malignancies, and establish the existence of a molecular signature associated with an increased susceptibility to develop intestinal cancer. Our results confirm that a considerable degree in the variability associated to cancer susceptibility cannot be ascribed to major genetic changes and that such heterogeneity seems to correlate with distinct molecular profiles associated to classes of poorly or highly susceptible isogenic animals.We also investigated in vivo the timing at which the remodeling occur at the epigenomic scale by analyzing the alterations in the DNA methylation and gene expression profiles of intestinal stem cells upon the loss of the Apc gene, the most common genetic lesion associated with human colorectal cancer initiation. We found that the loss of function of Apc in the Lgr5-positive intestinal stem cell compartment is rapidly accompanied by a reprogramming of the DNA methylation profiles resulting in altered gene expression and impaired fate determination in those cells. The results show that part of the phenotype resulting from the constitutive activation of the Wnt pathway upon Apc loss is acquired via differential epigenetic regulation of key biological processes controlling the balance between self-renewal and differentiation. By using conditional genetic ex vivo models we found part of these oncogenic effects to be reversible via the modulation of the machinery responsible for de novo methylation of the DNA.Overall, this work confirms that the epigenetic remodeling is an early event in tumorigenesis that might even precede actual cell transformation. The functional impact of our findings on cancer initiation is currently under investigation
Creff, Justine. „Etude des mécanismes impliqués dans le contrôle du destin des cellules souches intestinales et développement d'un modèle 3D d'épithélium intestinal“. Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30228.
Der volle Inhalt der QuelleThe small intestine is a complex tissue with a crypt/villus architecture and high tissue polarity. Intestinal stem cells are located at the crypt bottom where they proliferate and differentiate while they migrate upward to the top of villi, allowing the constant renewal of the entire intestinal epithelium every 3 to 5 days. Compartmentalization in the crypt plays a key role in stem cell protection and maintenance, and this is supported by the microenvironment and tissue organization. The balance between stem cell proliferation and differentiation is necessary to maintain tissue integrity, and disruption of this balance leads to developmental anomalies and malignant transformation. Studying the mechanisms governing intestinal stem cells maintenance is therefore crucial to understand tissue homeostasis. p57Kip2 is a cyclin/CDKs inhibitor and a putative tumor suppressor. p57 is also the gene the most frequently mutated or silenced in Beckwith-Wiedemann syndrome (BWS), characterized by multiple developmental defects and tumor predisposition during childhood. Generation of knock-in mice expressing a mutant p57 (p57CK-) that cannot bind to cyclins and CDKs demonstrated that p57 exerts CDKs independent functions during development and that BWS is not entirely caused by loss of CDKs inhibition due to p57 inactivation. The first aim of this project was to investigate the role of p57 in the maintenance of intestinal stem cells. Two population of stem cells have been described in the intestine: proliferative crypt base columnar cells (CBCs), responsible of the constant renewal of the epithelium, and quiescent +4 stem cells, activated during regeneration after tissue damage. Our data shows that p57 is involved in maintaining the quiescence of the +4 reserve stem cells in a CDK independent manner. Indeed, p57KO mice exhibit an increased proliferation in the crypt caused by amplification of +4 stem cells and of the progenitor population (transit amplifying cells), while CBCs are not affected by loss of p57. Finally, our results show that p57 can inhibit Ascl2 transcriptional activity, and we identified new p57 partners that form this transcriptional repressor complex. This work could elucidate the role of p57 in intestinal tumorigenesis. The second aim of this project was to develop a new culture model to study intestinal stem cells. [...]
Andriatsilavo, Rakoto Mahéva. „La régulation des cellules souches adultes intestinales de drosophila melanogaster : Comment SPEN influence un destin cellulaire“. Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066381/document.
Der volle Inhalt der QuelleAdult stem cells are non-differentiated cells that maintain tissue homeostasis by supplying differentiated cells while at the same time self-renewing. How is this balance between stem cell state and differentiated state controlled? This question became one of the major interests of the Stem cell research and Translation, mostly due to the potential therapeutic perspectives that it gives. Regarding this effort, this thesis work describes a new function of a gene call split-ends/spen in adult stem cell regulation in Drosophila intestine. SPEN familly is composed by essential genes, which codes conserved proteins from Plants to Metazoa. They are involved in key cellular processes such as cell death, differentiation or proliferation, and are associated with various molecular functions controlling transcriptional and post-transcriptional gene expression. We found that a spen inactivation in Drosophila intestine leads to an abnormal increase in adult stem cells. In this work, by combining genetics tools and in vivo stem cell analysis methods, we could show that Spen works as a key factor of intestinal stem cell commitment and plays a role in their proliferation control. How does genetics programs control cellular identity? In order to investigate the molecular signature of intestinal stem cells and progenitor cells knockdowned for spen, we combined genetics, cell sorting and mRNA sequencing analysis to uncovered Spen target genes regulated in intestinal stem cells. Here, we provide a new function of spen in adult stem cell regulation, which may also shed light on its mode of action in other developmental and pathological contexts
Bücher zum Thema "Les cellules souches intestinales"
Les cellules souches, porteuses d'immortalité. Paris: Odile Jacob, 2007.
Den vollen Inhalt der Quelle findenDesnos, Michel. Faut-il autoriser le clonage scientifique?: Les enjeux de la recherche sur les cellules souches. Paris: La Documentation française, 2006.
Den vollen Inhalt der Quelle findenLes cellules souches embryonnaires: Droit,éthique et convergence. Montréal, Québec: Editions Thémis, 2003.
Den vollen Inhalt der Quelle findenFagniez, Pierre-Louis. Cellules souches et choix éthiques: Rapport au premier ministre. Paris: Documentation française, 2006.
Den vollen Inhalt der Quelle findenAltavilla, Annagrazia. La recherche sur les cellules souches: Quels enjeux pour l'Europe? Paris: L'Harmattan, 2012.
Den vollen Inhalt der Quelle findenLanza, R. P. Essentials of stem cell biology. Amsterdam: Elsevier/Academic Press, 2006.
Den vollen Inhalt der Quelle finden1940-, Potten C. S., Clarke Robert 1964- und Renehan Andrew G, Hrsg. Tissue stem cells. New York: Taylor & Francis, 2006.
Den vollen Inhalt der Quelle findenCancer stem cells: Methods and protocols. Dordrecht: Humana Press, 2009.
Den vollen Inhalt der Quelle findenInstituts de recherche en santé du Canada. Recherche sur les cellules souches humaines: La santé dans un cadre éthique : document de travail. Ottawa, Ont: Instituts de recherche en santé du Canada, 2001.
Den vollen Inhalt der Quelle findenFor the love of Amanda. Wilmington, NC: October Publishing, 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Les cellules souches intestinales"
Rosset, P. „Cellules souches mésenchymateuses“. In Réparations tissulaires à la jambe, 131–37. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-287-99066-3_13.
Der volle Inhalt der QuelleLucas, H., C. Grenet, G. A. de Boccard, R. Mieusset und P. Durand. „Spermatogenèse — Cellules souches testiculaires — Reprotoxicité“. In Physiologie, pathologie et thérapie de la reproduction chez l’humain, 35–52. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-8178-0061-5_3.
Der volle Inhalt der QuelleTachdjian, G., O. Féraud, C. Bas, A. Magniez, N. Oudrhiri und A. L. Bennaceur-Griscelli. „Cellules souches embryonnaires et cellules pluripotentes induites, aspects biologiques et applications“. In Physiologie, pathologie et thérapie de la reproduction chez l’humain, 633–41. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-8178-0061-5_59.
Der volle Inhalt der QuelleMadelaine, I., und P. Faure. „Greffe de cellules souches hématopoïétiques“. In Pharmacie Clinique Pratique en Oncologie, 293–96. Elsevier, 2020. http://dx.doi.org/10.1016/b978-2-294-76375-5.00029-4.
Der volle Inhalt der QuelleCoghill, James M., und Thomas C. Shea. „Greffe de cellules souches hématopoïétiques“. In Médecine interne de Netter, 600–606. Elsevier, 2011. http://dx.doi.org/10.1016/b978-2-294-70951-7.00077-3.
Der volle Inhalt der QuelleAzzouna, Atf, und Habib Chouchane. „Cellules souches animales et humaines“. In Développement durable et autres questions d'actualité, 307. Educagri éditions, 2011. http://dx.doi.org/10.3917/edagri.legar.2011.01.0307.
Der volle Inhalt der Quelle„Les thérapies par cellules souches“. In L'épigénétique en images, 150–55. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2245-4-033.
Der volle Inhalt der Quelle„Les thérapies par cellules souches“. In L'épigénétique en images, 150–55. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2245-4.c033.
Der volle Inhalt der QuelleDalle, Jean-Hugues. „Greffe de cellules souches hématopoïétiques“. In La Drépanocytose de L'enfant et L'adolescent, 211–17. Elsevier, 2020. http://dx.doi.org/10.1016/b978-2-294-76049-5.00028-x.
Der volle Inhalt der QuelleLe Douarin, Nicole. „Régénération, cellules souches et médecine régénérative“. In Science et démocratie, 131–50. Odile Jacob, 2014. http://dx.doi.org/10.3917/oj.haroc.2014.01.0131.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Les cellules souches intestinales"
Ferre, F. „Des greffes autologues aux cellules souches, quel avenir pour la chirurgie pré-implantaire ?“ In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601005.
Der volle Inhalt der QuelleBouvet-Gerbettaz, S., GF Carle und N. Rochet. „Ingénierie tissulaire osseuse et cellules souches mésenchymateuses : applications à la sphère buccale et maxillo-faciale“. In 54ème Congrès de la SFMBCB. Les Ulis, France: EDP Sciences, 2011. http://dx.doi.org/10.1051/sfmbcb/20115403016.
Der volle Inhalt der QuelleBaaroun, V. „Ostéonécrose : est-ce une fatalité ?“ In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601007.
Der volle Inhalt der QuelleCasteilla, L. „Les cellules souches mésenchymateuses de la moelle osseuse et des tissus adipeux : de la physiologie à la médecine régénératrice“. In 63ème Congrès de la SFCO, herausgegeben von S. Boisramé, S. Cousty, J. C. Deschaumes, V. Descroix, L. Devoize, P. Lesclous, C. Mauprivez und T. Fortin. Les Ulis, France: EDP Sciences, 2015. http://dx.doi.org/10.1051/sfco/20156301001.
Der volle Inhalt der QuelleCoffin, E., A. Brun, G. Perrod, M. Piffoux, I. Boucenna, M. Bruzzi, L. M'harzi et al. „Prévention des sténoses oesophagiennes après dissection sous-muqueuse étendue par application de gel Pluronic F127 associé ou non à des vésicules extracellulaires de cellules souches mésenchymateuses dans le modèle porcin“. In Journées Francophones d'Hépato-Gastroentérologie et d'Oncologie Digestive (JFHOD). Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1680886.
Der volle Inhalt der QuelleLe Choismier, H. „Un transporteur d’oxygène universel d’origine marine au service de la santé“. In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601009.
Der volle Inhalt der Quelle