Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lennard-Jones clusters“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lennard-Jones clusters" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lennard-Jones clusters"
Rom�n, C. E., und I. L. Garz�n. „Evaporation of Lennard-Jones clusters“. Zeitschrift f�r Physik D Atoms, Molecules and Clusters 20, Nr. 1-4 (März 1991): 163–66. http://dx.doi.org/10.1007/bf01543964.
Der volle Inhalt der QuelleCai, Wensheng, Yan Feng, Xueguang Shao und Zhongxiao Pan. „Optimization of Lennard-Jones atomic clusters“. Journal of Molecular Structure: THEOCHEM 579, Nr. 1-3 (März 2002): 229–34. http://dx.doi.org/10.1016/s0166-1280(01)00730-8.
Der volle Inhalt der QuelleGarz�n, I. L., und M. Avalos-Borja. „Thermal decay of Lennard-Jones clusters“. Zeitschrift f�r Physik D Atoms, Molecules and Clusters 12, Nr. 1-4 (März 1989): 185–87. http://dx.doi.org/10.1007/bf01426934.
Der volle Inhalt der QuelleLacava, Johann, Philip Born und Tobias Kraus. „Nanoparticle Clusters with Lennard-Jones Geometries“. Nano Letters 12, Nr. 6 (14.05.2012): 3279–82. http://dx.doi.org/10.1021/nl3013659.
Der volle Inhalt der QuellePal, Barnana. „Ordering in Two-Dimensional Lennard-Jones Clusters“. ISRN Condensed Matter Physics 2012 (06.02.2012): 1–7. http://dx.doi.org/10.5402/2012/342642.
Der volle Inhalt der QuelleMravlak, Marko, Thomas Kister, Tobias Kraus und Tanja Schilling. „Structure diagram of binary Lennard-Jones clusters“. Journal of Chemical Physics 145, Nr. 2 (14.07.2016): 024302. http://dx.doi.org/10.1063/1.4954938.
Der volle Inhalt der QuelleCassioli, Andrea, Marco Locatelli und Fabio Schoen. „Global optimization of binary Lennard–Jones clusters“. Optimization Methods and Software 24, Nr. 4-5 (Oktober 2009): 819–35. http://dx.doi.org/10.1080/10556780802614101.
Der volle Inhalt der QuelleSOLOV'YOV, ILIA A., ANDREY V. SOLOV'YOV und WALTER GREINER. „FUSION PROCESS OF LENNARD–JONES CLUSTERS: GLOBAL MINIMA AND MAGIC NUMBERS FORMATION“. International Journal of Modern Physics E 13, Nr. 04 (August 2004): 697–736. http://dx.doi.org/10.1142/s0218301304002454.
Der volle Inhalt der QuelleCalvo, F., M. Benali, V. Gerbaud und M. Hemati. „Close-packing transitions in clusters of Lennard-Jones spheres“. Computing Letters 1, Nr. 4 (06.03.2005): 183–91. http://dx.doi.org/10.1163/157404005776611295.
Der volle Inhalt der QuelleGarzón, I. L., M. Avalos Borja und Estela Blaisten-Barojas. „Phenomenological model of melting in Lennard-Jones clusters“. Physical Review B 40, Nr. 7 (01.09.1989): 4749–59. http://dx.doi.org/10.1103/physrevb.40.4749.
Der volle Inhalt der QuelleDissertationen zum Thema "Lennard-Jones clusters"
Berg, Michael. „THE STATIC AND DYNAMIC PROPERTIES OF LENNARD-JONES CLUSTERS AND CHAINS OF LENNARD-JONES PARTICLES“. University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1153750856.
Der volle Inhalt der QuelleGonnet, Pedro G. „Minimization of Lennard-Jones clusters using multi-scaling methods from molecular dynamics“. Zürich : ETH, Eidgenössische Technische Hochschule Zürich, [Institut für Wissenschaftliches Rechnen, Departement für Informatik], 2003. http://e-collection.ethbib.ethz.ch/show?type=dipl&nr=99.
Der volle Inhalt der QuelleMaillard, Lune. „Bayesian methods for studying Nuclear Quantum Effects in Material Science“. Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS407.pdf.
Der volle Inhalt der QuelleAlthough much heavier than electrons, light nuclei, mainly hydrogen, exhibit Nuclear Quantum Effects, such as tunnelling and zero-point energy, that can have a large impact on the structure and the dynamics of materials. The standard method to account for them when simulating the static properties at equilibrium is the use of path integrals. However, this method considerably increases the number of degrees of freedom with a consequent enlargement of the parameter space to study; moreover, extracting the partition function and other statistical quantities, such as the density of states (DOS), using path integrals is computationally prohibitive. In this thesis, we present a new formulation of nested sampling (a method that relies on Bayesian statistics), which reduces the multidimensional problem into a one-dimensional integral on the energy and directly provides the DOS. A crucial issue for this algorithm is how to find new sampling points. Hence, we first implement and test new search algorithms in nested fit — a program that is based on the nested sampling approach — on a series of benchmark examples for which the results are known: amongst all methods tested, slice sampling is the one that performs best. Secondly, we use nested fit to compute the thermodynamic properties of Lennard-Jones clusters, which are characterised by tens of degrees of freedom. In that case, the advantage of using nested sampling is that the classical partition function can be computed at all temperatures with a single exploration. Finally, we merge the nested sampling and path integrals approaches. In that case, the straightforward method requires to perform runs at various temperatures to compute the quantum partition function, making the analysis computationally expensive. Hence, we present a new method that provides the quantum partition function and the related thermodynamic quantities with a single exploration, like for the classical case, at a reasonable computational cost. As a test, we compare the classical and quantum behaviour of clusters where the atoms interact via a Lennard-Jones pairwise potential and discuss the impact of nuclear quantum effects on the thermodynamics of such cluster types
Buchteile zum Thema "Lennard-Jones clusters"
Román, C. E., und I. L. Garzón. „Evaporation of Lennard-Jones clusters“. In Small Particles and Inorganic Clusters, 613–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76178-2_147.
Der volle Inhalt der QuelleGarzón, I. L., und M. Avalos-Borja. „Thermal decay of Lennard-Jones clusters“. In Small Particles and Inorganic Clusters, 185–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74913-1_42.
Der volle Inhalt der QuelleWang, Q., M. P. Iñiguez und J. A. Alonso. „Molecular dynamics study of A18B Lennard-Jones clusters“. In Atomic and Nuclear Clusters, 294–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79696-8_76.
Der volle Inhalt der QuelleGarzón, I. L., M. Avalos-Borja und E. Blaisten-Barojas. „More on the melting of Lennard-Jones clusters“. In Small Particles and Inorganic Clusters, 181–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74913-1_41.
Der volle Inhalt der QuelleGarzón, I. L., X. P. Long, R. Kawai und J. H. Weare. „Structure and dynamics of Lennard-Jones clusters with impurities“. In Small Particles and Inorganic Clusters, 81–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74913-1_18.
Der volle Inhalt der QuelleChekmarev, S. F., und F. S. Liu. „Some aspects of dynamic chaos in small Lennard-Jones clusters“. In Small Particles and Inorganic Clusters, 681–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76178-2_163.
Der volle Inhalt der QuelleNorthby, J. A., J. Xie, David L. Freeman und J. D. Doll. „Binding energy of large icosahedral and cuboctahedral Lennard-Jones clusters“. In Small Particles and Inorganic Clusters, 69–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74913-1_15.
Der volle Inhalt der QuelleRaoult, B., J. Farges, M. F. De Feraudy und G. Torchet. „Stability of relaxed Lennard-Jones models made of 500 to 6000 atoms“. In Small Particles and Inorganic Clusters, 85–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74913-1_19.
Der volle Inhalt der QuelleRomán, C. E., und I. L. Garzón. „Computer Simulation Study of the Evaporation Mechanisms in Lennard-Jones Clusters“. In Physics and Chemistry of Finite Systems: From Clusters to Crystals, 459–64. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-017-2645-0_60.
Der volle Inhalt der QuelleBarrett, Jonathan C., und Andrew P. Knight. „Simulation of the Growth and Decay of Isolated Lennard–Jones Clusters“. In Nucleation and Atmospheric Aerosols, 117–20. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6475-3_23.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lennard-Jones clusters"
Cui, Zhihua, und Xingjuan Cai. „A new stochastic algorithm to solve Lennard-Jones clusters“. In 2011 International Conference of Soft Computing and Pattern Recognition (SoCPaR). IEEE, 2011. http://dx.doi.org/10.1109/socpar.2011.6089151.
Der volle Inhalt der QuellePereira, Francisco B., und Jorge M. C. Marques. „Towards an effective evolutionary approach for binary Lennard-Jones clusters“. In 2010 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2010. http://dx.doi.org/10.1109/cec.2010.5586220.
Der volle Inhalt der QuelleVehkamäki, Hanna. „Nucleation rates of Lennard-Jones clusters from growth and decay simulations“. In The 15th international conference on nucleation and atmospheric aerosols. AIP, 2000. http://dx.doi.org/10.1063/1.1361821.
Der volle Inhalt der QuelleChen, Yongjing, Zhihua Cui und Jianchao Zeng. „Structural optimization of lennard-jones clusters by hybrid social cognitive optimization algorithm“. In 2010 9th IEEE International Conference on Cognitive Informatics (ICCI). IEEE, 2010. http://dx.doi.org/10.1109/coginf.2010.5599739.
Der volle Inhalt der QuelleTzou, D. Y., J. K. Chen, R. Roybal und J. E. Beraun. „Cluster Dynamics for Multiscale Interactions“. In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47560.
Der volle Inhalt der QuelleNarendra, Aneet D., und Abhijit Mukherjee. „Molecular Dynamics Simulation of Homogeneous Nucleation in a Lennard Jones Liquid“. In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68710.
Der volle Inhalt der QuelleAouf, Rashad, und Vojislav Ilic. „Microscopic Observation of Energy Propagation in Polymeric Fluids Crossing a Barrier“. In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66752.
Der volle Inhalt der QuelleKaneko, Toshihiro, Kenji Yasuoka, Ayori Mitsutake und Xiao Cheng Zeng. „Multicanonical Molecular Dynamics Simulation Study of the Liquid-Solid and Solid-Solid Transitions in Lennard-Jones Clusters“. In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44457.
Der volle Inhalt der QuelleTsuda, Shin-Ichi, Takashi Tokumasu, Kenjiro Kamijo und Yoichiro Matsumoto. „Molecular Dynamics Study of Heterogeneous Bubble Nucleation in Liquid Oxygen Including Helium, Nitrogen, or Argon“. In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31022.
Der volle Inhalt der QuelleGhosh, Arka, Rammohan Mallipeddi, Swagatam Das und Asit Kr Das. „A Switched Parameter Differential Evolution with Multi-donor Mutation and Annealing Based Local Search for Optimization of Lennard-Jones Atomic Clusters“. In 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2018. http://dx.doi.org/10.1109/cec.2018.8477991.
Der volle Inhalt der Quelle