Zeitschriftenartikel zum Thema „Legionnaires' Disease Mathematical models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Legionnaires' Disease Mathematical models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Cassell, Kelsie, Paul Gacek, Therese Rabatsky-Ehr, Susan Petit, Matthew Cartter und Daniel M. Weinberger. „Estimating the True Burden of Legionnaires’ Disease“. American Journal of Epidemiology 188, Nr. 9 (21.06.2019): 1686–94. http://dx.doi.org/10.1093/aje/kwz142.
Der volle Inhalt der QuelleDobson, A. „Mathematical models for emerging disease“. Science 346, Nr. 6215 (11.12.2014): 1294–95. http://dx.doi.org/10.1126/science.aaa3441.
Der volle Inhalt der QuelleBakshi, Suruchi, Vijayalakshmi Chelliah, Chao Chen und Piet H. van der Graaf. „Mathematical Biology Models of Parkinson's Disease“. CPT: Pharmacometrics & Systems Pharmacology 8, Nr. 2 (02.11.2018): 77–86. http://dx.doi.org/10.1002/psp4.12362.
Der volle Inhalt der QuelleGrassly, Nicholas C., und Christophe Fraser. „Mathematical models of infectious disease transmission“. Nature Reviews Microbiology 6, Nr. 6 (13.05.2008): 477–87. http://dx.doi.org/10.1038/nrmicro1845.
Der volle Inhalt der QuelleKLEIN, EILI, RAMANAN LAXMINARAYAN, DAVID L. SMITH und CHRISTOPHER A. GILLIGAN. „Economic incentives and mathematical models of disease“. Environment and Development Economics 12, Nr. 5 (Oktober 2007): 707–32. http://dx.doi.org/10.1017/s1355770x0700383x.
Der volle Inhalt der QuelleMeltzer, M. I., und R. A. I. Norval. „Mathematical models of tick-borne disease transmission“. Parasitology Today 9, Nr. 8 (August 1993): 277–78. http://dx.doi.org/10.1016/0169-4758(93)90116-w.
Der volle Inhalt der QuelleDonovan, Graham M. „Multiscale mathematical models of airway constriction and disease“. Pulmonary Pharmacology & Therapeutics 24, Nr. 5 (Oktober 2011): 533–39. http://dx.doi.org/10.1016/j.pupt.2011.01.003.
Der volle Inhalt der QuelleMedley, Graham F. „Mathematical models of tick-borne disease transmission: Reply“. Parasitology Today 9, Nr. 8 (August 1993): 292. http://dx.doi.org/10.1016/0169-4758(93)90123-w.
Der volle Inhalt der QuelleDUNN, C. E., B. ROWLINGSON, R. S. BHOPAL und P. DIGGLE. „Meteorological conditions and incidence of Legionnaires' disease in Glasgow, Scotland: application of statistical modelling“. Epidemiology and Infection 141, Nr. 4 (12.06.2012): 687–96. http://dx.doi.org/10.1017/s095026881200101x.
Der volle Inhalt der QuelleDe Gaetano, Andrea, Thomas Hardy, Benoit Beck, Eyas Abu-Raddad, Pasquale Palumbo, Juliana Bue-Valleskey und Niels Pørksen. „Mathematical models of diabetes progression“. American Journal of Physiology-Endocrinology and Metabolism 295, Nr. 6 (Dezember 2008): E1462—E1479. http://dx.doi.org/10.1152/ajpendo.90444.2008.
Der volle Inhalt der QuelleCabanlit, Epimaco A., Elsie M. Cabanlit, Steiltjes M. Cabanlit und Roxan Eve M. Cabanlit. „Mathematical Models for the Coronavirus Disease (Covid-19) Pandemic“. International Journal of Scientific and Research Publications (IJSRP) 10, Nr. 4 (24.04.2020): p10082. http://dx.doi.org/10.29322/ijsrp.10.04.2020.p10082.
Der volle Inhalt der QuelleCOEN, P. G., P. T. HEATH, M. L. BARBOUR und G. P. GARNETT. „Mathematical models of Haemophilus influenzae type b“. Epidemiology and Infection 120, Nr. 3 (Juni 1998): 281–95. http://dx.doi.org/10.1017/s0950268898008784.
Der volle Inhalt der QuelleCurcio, Luciano, Laura D'Orsi und Andrea De Gaetano. „Seven Mathematical Models of Hemorrhagic Shock“. Computational and Mathematical Methods in Medicine 2021 (03.06.2021): 1–34. http://dx.doi.org/10.1155/2021/6640638.
Der volle Inhalt der QuelleDike, Chinyere Ogochukwu, Zaitul Marlizawati Zainuddin und Ikeme John Dike. „Mathematical Models for Mitigating Ebola Virus Disease Transmission: A Review“. Advanced Science Letters 24, Nr. 5 (01.05.2018): 3536–43. http://dx.doi.org/10.1166/asl.2018.11432.
Der volle Inhalt der QuelleFeinstein, A. R., C. K. Chan, J. M. Esdaile, R. I. Horwitz, M. J. McFarlane und C. K. Wells. „Mathematical models and scientific reality in occurrence rates for disease.“ American Journal of Public Health 79, Nr. 9 (September 1989): 1303–4. http://dx.doi.org/10.2105/ajph.79.9.1303.
Der volle Inhalt der QuelleBlack, F. L., und B. Singer. „Elaboration Versus Simplification in Refining Mathematical Models of Infectious Disease“. Annual Review of Microbiology 41, Nr. 1 (Oktober 1987): 677–701. http://dx.doi.org/10.1146/annurev.mi.41.100187.003333.
Der volle Inhalt der QuelleGarnett, G. P. „An introduction to mathematical models in sexually transmitted disease epidemiology“. Sexually Transmitted Infections 78, Nr. 1 (01.02.2002): 7–12. http://dx.doi.org/10.1136/sti.78.1.7.
Der volle Inhalt der QuelleSarbaz, Yashar, und Hakimeh Pourakbari. „A review of presented mathematical models in Parkinson’s disease: black- and gray-box models“. Medical & Biological Engineering & Computing 54, Nr. 6 (07.11.2015): 855–68. http://dx.doi.org/10.1007/s11517-015-1401-9.
Der volle Inhalt der QuelleWeerasinghe, Hasitha N., Pamela M. Burrage, Kevin Burrage und Dan V. Nicolau. „Mathematical Models of Cancer Cell Plasticity“. Journal of Oncology 2019 (31.10.2019): 1–14. http://dx.doi.org/10.1155/2019/2403483.
Der volle Inhalt der QuelleHughes, G. „Validating mathematical models of plant-disease progress in space and time“. Mathematical Medicine and Biology 14, Nr. 2 (01.06.1997): 85–112. http://dx.doi.org/10.1093/imammb/14.2.85.
Der volle Inhalt der QuelleFujiwara, Takeo. „Mathematical Analysis of Epidemic Disease Models and Application to COVID-19“. Journal of the Physical Society of Japan 90, Nr. 2 (15.02.2021): 023801. http://dx.doi.org/10.7566/jpsj.90.023801.
Der volle Inhalt der QuelleFlorea, Aurelia, und Cristian Lăzureanu. „A mathematical model of infectious disease transmission“. ITM Web of Conferences 34 (2020): 02002. http://dx.doi.org/10.1051/itmconf/20203402002.
Der volle Inhalt der QuelleWeir, Mark H., Alexis L. Mraz und Jade Mitchell. „An Advanced Risk Modeling Method to Estimate Legionellosis Risks Within a Diverse Population“. Water 12, Nr. 1 (20.12.2019): 43. http://dx.doi.org/10.3390/w12010043.
Der volle Inhalt der QuelleBravo de la Parra, R., M. Marvá, E. Sánchez und L. Sanz. „Discrete Models of Disease and Competition“. Discrete Dynamics in Nature and Society 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/5310837.
Der volle Inhalt der QuelleEl Khatib, N., O. Kafi, A. Sequeira, S. Simakov, Yu Vassilevski und V. Volpert. „Mathematical modelling of atherosclerosis“. Mathematical Modelling of Natural Phenomena 14, Nr. 6 (2019): 603. http://dx.doi.org/10.1051/mmnp/2019050.
Der volle Inhalt der QuelleYanchevskaya, E. Ya, und O. A. Mesnyankina. „Mathematical Modelling and Prediction in Infectious Disease Epidemiology“. RUDN Journal of Medicine 23, Nr. 3 (15.12.2019): 328–34. http://dx.doi.org/10.22363/2313-0245-2019-23-3-328-334.
Der volle Inhalt der QuelleLangemann, Dirk, Igor Nesteruk und Jürgen Prestin. „Comparison of mathematical models for the dynamics of the Chernivtsi children disease“. Mathematics and Computers in Simulation 123 (Mai 2016): 68–79. http://dx.doi.org/10.1016/j.matcom.2016.01.003.
Der volle Inhalt der QuelleRoberts, Paul A., Eamonn A. Gaffney, Philip J. Luthert, Alexander J. E. Foss und Helen M. Byrne. „Mathematical and computational models of the retina in health, development and disease“. Progress in Retinal and Eye Research 53 (Juli 2016): 48–69. http://dx.doi.org/10.1016/j.preteyeres.2016.04.001.
Der volle Inhalt der QuelleDurham, David P., und Elizabeth A. Casman. „Incorporating individual health-protective decisions into disease transmission models: a mathematical framework“. Journal of The Royal Society Interface 9, Nr. 68 (20.07.2011): 562–70. http://dx.doi.org/10.1098/rsif.2011.0325.
Der volle Inhalt der QuelleLiu, Yifan. „Mathematical models of vaccine inventory design for a breakout of epidemic disease“. PAMM 7, Nr. 1 (Dezember 2007): 2150013–14. http://dx.doi.org/10.1002/pamm.200700367.
Der volle Inhalt der QuelleNkeki, C. I., und G. O. S. Ekhaguere. „Some actuarial mathematical models for insuring the susceptibles of a communicable disease“. International Journal of Financial Engineering 07, Nr. 02 (18.05.2020): 2050014. http://dx.doi.org/10.1142/s2424786320500140.
Der volle Inhalt der QuelleFENTON, ANDY. „Editorial: Mathematical modelling of infectious diseases“. Parasitology 143, Nr. 7 (30.03.2016): 801–4. http://dx.doi.org/10.1017/s0031182016000214.
Der volle Inhalt der QuelleEl Khatib, N., S. Génieys, B. Kazmierczak und V. Volpert. „Mathematical modelling of atherosclerosis as an inflammatory disease“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, Nr. 1908 (13.12.2009): 4877–86. http://dx.doi.org/10.1098/rsta.2009.0142.
Der volle Inhalt der QuelleMichor, Franziska. „Mathematical Models of Cancer Evolution and Cure“. Blood 126, Nr. 23 (03.12.2015): SCI—54—SCI—54. http://dx.doi.org/10.1182/blood.v126.23.sci-54.sci-54.
Der volle Inhalt der QuelleGoncharova, Anastaciya B., Eugeny P. Kolpak, Madina M. Rasulova und Alina V. Abramova. „Mathematical modeling of cancer treatment“. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes 16, Nr. 4 (2020): 437–46. http://dx.doi.org/10.21638/11701/spbu10.2020.408.
Der volle Inhalt der QuelleVAN HEST, N. A. H., C. J. P. A. HOEBE, J. W. DEN BOER, J. K. VERMUNT, E. P. F. IJZERMAN, W. G. BOERSMA und J. H. RICHARDUS. „Incidence and completeness of notification of Legionnaires' disease in The Netherlands: covariate capture–recapture analysis acknowledging regional differences“. Epidemiology and Infection 136, Nr. 4 (22.06.2007): 540–50. http://dx.doi.org/10.1017/s0950268807008977.
Der volle Inhalt der QuelleChung, Chun Yen, Hung Yuan Chung und Wen Tsai Sung. „Mathematical Models for the Dynamics Simulation of Tuberculosis“. Applied Mechanics and Materials 418 (September 2013): 265–68. http://dx.doi.org/10.4028/www.scientific.net/amm.418.265.
Der volle Inhalt der QuelleShain, Kenneth H. „Mathematical Models of Cancer Evolution and Cure“. Blood 126, Nr. 23 (03.12.2015): SCI—55—SCI—55. http://dx.doi.org/10.1182/blood.v126.23.sci-55.sci-55.
Der volle Inhalt der QuelleBrownell, A. L., B. G. Jenkins und O. Isacson. „Dopamine imaging markers and predictive mathematical models for progressive degeneration in Parkinson's disease“. Biomedicine & Pharmacotherapy 53, Nr. 3 (April 1999): 131–40. http://dx.doi.org/10.1016/s0753-3322(99)80078-x.
Der volle Inhalt der QuelleChowell, G. „Mathematical models to elucidate the transmission dynamics and control of vector-borne disease“. International Journal of Infectious Diseases 53 (Dezember 2016): 6–7. http://dx.doi.org/10.1016/j.ijid.2016.11.020.
Der volle Inhalt der QuelleJäger, Jens, Sebastian Marwitz, Jana Tiefenau, Janine Rasch, Olga Shevchuk, Christian Kugler, Torsten Goldmann und Michael Steinert. „Human Lung Tissue Explants Reveal Novel Interactions during Legionella pneumophila Infections“. Infection and Immunity 82, Nr. 1 (28.10.2013): 275–85. http://dx.doi.org/10.1128/iai.00703-13.
Der volle Inhalt der QuelleTchuenche, Jean M. „Patient-dependent effects in disease control: a mathematical model“. ANZIAM Journal 48, Nr. 4 (April 2007): 583–96. http://dx.doi.org/10.1017/s1446181100003230.
Der volle Inhalt der QuelleRodriguez-Brenes, Ignacio A., und Dominik Wodarz. „Preventing clonal evolutionary processes in cancer: Insights from mathematical models“. Proceedings of the National Academy of Sciences 112, Nr. 29 (21.07.2015): 8843–50. http://dx.doi.org/10.1073/pnas.1501730112.
Der volle Inhalt der QuelleIshtiaq, Amna. „Dynamics of COVID-19 Transmission: Compartmental-based Mathematical Modeling“. Life and Science 1, supplement (23.12.2020): 5. http://dx.doi.org/10.37185/lns.1.1.134.
Der volle Inhalt der QuelleFORYS, URSULA. „INTERLEUKIN MATHEMATICAL MODEL OF AN IMMUNE SYSTEM“. Journal of Biological Systems 03, Nr. 03 (September 1995): 889–902. http://dx.doi.org/10.1142/s0218339095000794.
Der volle Inhalt der QuelleChristen, Paula, und Lesong Conteh. „How are mathematical models and results from mathematical models of vaccine-preventable diseases used, or not, by global health organisations?“ BMJ Global Health 6, Nr. 9 (September 2021): e006827. http://dx.doi.org/10.1136/bmjgh-2021-006827.
Der volle Inhalt der QuelleBowong, S., A. Temgoua, Y. Malong und J. Mbang. „Mathematical Study of a Class of Epidemiological Models with Multiple Infectious Stages“. International Journal of Nonlinear Sciences and Numerical Simulation 21, Nr. 3-4 (26.05.2020): 259–74. http://dx.doi.org/10.1515/ijnsns-2017-0244.
Der volle Inhalt der QuelleДерпак, V. Derpak, Полухин, V. Polukhin, Еськов, Valeriy Eskov, Пашнин und A. Pashnin. „Mathematical modeling of involuntary movements in health and disease“. Complexity. Mind. Postnonclassic 4, Nr. 2 (25.09.2015): 75–86. http://dx.doi.org/10.12737/12002.
Der volle Inhalt der QuelleChowdhury, Debashish, und Dietrich Stauffer. „Systematics of the models of immune response and autoimmune disease“. Journal of Statistical Physics 59, Nr. 3-4 (Mai 1990): 1019–42. http://dx.doi.org/10.1007/bf01025860.
Der volle Inhalt der QuelleMiller, Joel C. „Mathematical models of SIR disease spread with combined non-sexual and sexual transmission routes“. Infectious Disease Modelling 2, Nr. 1 (Februar 2017): 35–55. http://dx.doi.org/10.1016/j.idm.2016.12.003.
Der volle Inhalt der Quelle