Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Legionnaires' Disease Mathematical models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Legionnaires' Disease Mathematical models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Legionnaires' Disease Mathematical models"
Cassell, Kelsie, Paul Gacek, Therese Rabatsky-Ehr, Susan Petit, Matthew Cartter und Daniel M. Weinberger. „Estimating the True Burden of Legionnaires’ Disease“. American Journal of Epidemiology 188, Nr. 9 (21.06.2019): 1686–94. http://dx.doi.org/10.1093/aje/kwz142.
Der volle Inhalt der QuelleDobson, A. „Mathematical models for emerging disease“. Science 346, Nr. 6215 (11.12.2014): 1294–95. http://dx.doi.org/10.1126/science.aaa3441.
Der volle Inhalt der QuelleBakshi, Suruchi, Vijayalakshmi Chelliah, Chao Chen und Piet H. van der Graaf. „Mathematical Biology Models of Parkinson's Disease“. CPT: Pharmacometrics & Systems Pharmacology 8, Nr. 2 (02.11.2018): 77–86. http://dx.doi.org/10.1002/psp4.12362.
Der volle Inhalt der QuelleGrassly, Nicholas C., und Christophe Fraser. „Mathematical models of infectious disease transmission“. Nature Reviews Microbiology 6, Nr. 6 (13.05.2008): 477–87. http://dx.doi.org/10.1038/nrmicro1845.
Der volle Inhalt der QuelleKLEIN, EILI, RAMANAN LAXMINARAYAN, DAVID L. SMITH und CHRISTOPHER A. GILLIGAN. „Economic incentives and mathematical models of disease“. Environment and Development Economics 12, Nr. 5 (Oktober 2007): 707–32. http://dx.doi.org/10.1017/s1355770x0700383x.
Der volle Inhalt der QuelleMeltzer, M. I., und R. A. I. Norval. „Mathematical models of tick-borne disease transmission“. Parasitology Today 9, Nr. 8 (August 1993): 277–78. http://dx.doi.org/10.1016/0169-4758(93)90116-w.
Der volle Inhalt der QuelleDonovan, Graham M. „Multiscale mathematical models of airway constriction and disease“. Pulmonary Pharmacology & Therapeutics 24, Nr. 5 (Oktober 2011): 533–39. http://dx.doi.org/10.1016/j.pupt.2011.01.003.
Der volle Inhalt der QuelleMedley, Graham F. „Mathematical models of tick-borne disease transmission: Reply“. Parasitology Today 9, Nr. 8 (August 1993): 292. http://dx.doi.org/10.1016/0169-4758(93)90123-w.
Der volle Inhalt der QuelleDUNN, C. E., B. ROWLINGSON, R. S. BHOPAL und P. DIGGLE. „Meteorological conditions and incidence of Legionnaires' disease in Glasgow, Scotland: application of statistical modelling“. Epidemiology and Infection 141, Nr. 4 (12.06.2012): 687–96. http://dx.doi.org/10.1017/s095026881200101x.
Der volle Inhalt der QuelleDe Gaetano, Andrea, Thomas Hardy, Benoit Beck, Eyas Abu-Raddad, Pasquale Palumbo, Juliana Bue-Valleskey und Niels Pørksen. „Mathematical models of diabetes progression“. American Journal of Physiology-Endocrinology and Metabolism 295, Nr. 6 (Dezember 2008): E1462—E1479. http://dx.doi.org/10.1152/ajpendo.90444.2008.
Der volle Inhalt der QuelleDissertationen zum Thema "Legionnaires' Disease Mathematical models"
Wilmot, Peter Nicholas. „Modelling cooling tower risk for Legionnaires' Disease using Bayesian Networks and Geographic Information Systems“. Title page, contents and conclusion only, 1999. http://web4.library.adelaide.edu.au/theses/09SIS.M/09sismw744.pdf.
Der volle Inhalt der QuelleRoberts, Paul Allen. „Mathematical models of the retina in health and disease“. Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:385f61c4-4ff1-45d3-bdb2-41338c174025.
Der volle Inhalt der QuelleOduro, Bismark. „Mathematical Models of Triatomine (Re)infestation“. Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1458563770.
Der volle Inhalt der QuelleZhang, Xu-Sheng. „Mathematical models of plant disease epidemics that involve virus interactions“. Thesis, University of Greenwich, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327341.
Der volle Inhalt der QuelleBell, Sally Sue. „Mathematical models assessing the importance of disease on ecological invasions“. Thesis, Heriot-Watt University, 2010. http://hdl.handle.net/10399/2316.
Der volle Inhalt der QuelleKorobeinikov, Andrei. „Stability and bifurcation of deterministic infectious disease models“. Thesis, University of Auckland, 2001. http://wwwlib.umi.com/dissertations/fullcit/3015611.
Der volle Inhalt der QuelleSubscription resource available via Digital Dissertations
Ning, Yao, und 宁耀. „The use of stochastic models of infectious disease transmission for public health: schistosomiasis japonica“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B4553097X.
Der volle Inhalt der QuelleBingham, Adrienna N. „Controlling Infectious Disease: Prevention and Intervention Through Multiscale Models“. W&M ScholarWorks, 2019. https://scholarworks.wm.edu/etd/1582642581.
Der volle Inhalt der QuelleKwong, Kim-hung, und 鄺劍雄. „Spatio-temporal transmission modelling of an infectious disease: a case study of the 2003 SARS outbreak in Hong Kong“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45693900.
Der volle Inhalt der QuelleVenkatachalam, Sangeeta. „Modeling Infectious Disease Spread Using Global Stochastic Field Simulation“. Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5335/.
Der volle Inhalt der QuelleBücher zum Thema "Legionnaires' Disease Mathematical models"
Center for Emerging Issues (U.S.). Overview of predictive infectious-disease modeling. Washington, D.C.]: United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Emerging Issues, 2005.
Den vollen Inhalt der Quelle findenCourant Institute of Mathematical Sciences, Hrsg. Mathematical methods for analysis of a complex disease. New York: Courant Institute of Mathematical Sciences, 2011.
Den vollen Inhalt der Quelle findenKarakawa, Masanori. A mathematical approach to cardiovascular disease: Mechanics of blood circulation. Tokyo: Kokuseido Pub. Co., 1998.
Den vollen Inhalt der Quelle findenModelling Disease Ecology With Mathematics. Springfield, MO: American Institute of Mathematical Sciences, 2008.
Den vollen Inhalt der Quelle findenRoy, Priti Kumar. Mathematical Models for Therapeutic Approaches to Control HIV Disease Transmission. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-852-6.
Der volle Inhalt der QuelleZawołek, M. W. A physical theory of focus development in plant disease. Wageningen, Netherlands: Agricultural University, 1989.
Den vollen Inhalt der Quelle findenKremer, Michael. Integrating behavioral choice into epidemiological models of AIDS. Cambridge, MA: National Bureau of Economic Research, 1996.
Den vollen Inhalt der Quelle findenGumel, Abba B. Modeling paradigms and analysis of disease transmission models. Providence, R.I: American Mathematical Society, 2010.
Den vollen Inhalt der Quelle findenStanecki, De Lay Karen, Hrsg. The demographic impact of an AIDS epidemic on an African country: Application of the iwgAIDS model. Washington, D.C: Center for International Research, U.S. Bureau of the Census, 1991.
Den vollen Inhalt der Quelle findenInternational Association for the Study of Insurance Economics. General Assembly. AIDS and insurance: Documents and texts from the panel of the 15th General Assembly of the Geneva Association. Genève: "Association", 1988.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Legionnaires' Disease Mathematical models"
Brown, Andrew S., Ian R. van Driel und Elizabeth L. Hartland. „Mouse Models of Legionnaires’ Disease“. In Current Topics in Microbiology and Immunology, 271–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/82_2013_349.
Der volle Inhalt der QuelleKretzschmar, Mirjam, und Jacco Wallinga. „Mathematical Models in Infectious Disease Epidemiology“. In Modern Infectious Disease Epidemiology, 209–21. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-93835-6_12.
Der volle Inhalt der QuelleDietz, K., und D. Schenzle. „Mathematical Models for Infectious Disease Statistics“. In A Celebration of Statistics, 167–204. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4613-8560-8_8.
Der volle Inhalt der QuelleKühl, Michael, Barbara Kracher, Alexander Groß und Hans A. Kestler. „Mathematical Models of Wnt Signaling Pathways“. In Wnt Signaling in Development and Disease, 153–60. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118444122.ch11.
Der volle Inhalt der QuelleRoy, Priti Kumar. „Mathematical Models in Stochastic Approach“. In Mathematical Models for Therapeutic Approaches to Control HIV Disease Transmission, 183–213. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-852-6_8.
Der volle Inhalt der QuelleNanni, P. G., G. Castellani, P. Pettazzoni, G. Pallotti und C. Pallotti. „Limits of mathematical models in biology and medicine“. In Atherosclerosis and Cardiovascular Disease, 232–36. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0731-7_31.
Der volle Inhalt der QuelleMohapatra, R. N., Donald Porchia und Zhisheng Shuai. „Compartmental Disease Models with Heterogeneous Populations: A Survey“. In Mathematical Analysis and its Applications, 619–31. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2485-3_51.
Der volle Inhalt der QuelleQi, Zhen, Gary W. Miller und Eberhard O. Voit. „Mathematical Models of Dopamine Metabolism in Parkinson’s Disease“. In Systems Biology of Parkinson's Disease, 151–71. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3411-5_8.
Der volle Inhalt der QuelleBoutayeb, Abdesslam, Mohamed E. N. Lamlili und Wiam Boutayeb. „A Review of Compartmental Mathematical Models Used in Diabetology“. In Disease Prevention and Health Promotion in Developing Countries, 217–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34702-4_14.
Der volle Inhalt der QuelleDioguardi, N., P. Mussio, M. Zuin und A. Lovati. „Mathematical Models for the Study of Hepatic Metabolism: A New Strategy“. In Assessment and Management of Hepatobiliary Disease, 9–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72631-6_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Legionnaires' Disease Mathematical models"
COLLINO, SIMONA, EZIO VENTURINO, LUCA FERRERI, LUIGI BERTOLOTTI, SERGIO ROSATI und MARIO GIACOBINI. „MODELS FOR TWO STRAINS OF THE CAPRINE ARTHRITIS ENCEPHALITIS VIRUS DISEASE“. In 15th International Symposium on Mathematical and Computational Biology. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813141919_0019.
Der volle Inhalt der QuelleChang, Albert Ling Sheng, Chong Khim Phin und Ho Chong Mun. „Comparing nonlinear models in describing disease progress curve of cocoa black pod“. In PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): Mathematical Sciences as the Core of Intellectual Excellence. Author(s), 2018. http://dx.doi.org/10.1063/1.5041682.
Der volle Inhalt der QuelleNielsen, B. F., M. Lysaker, C. Tarrou, M. C. MacLachlan, A. Abildgaard und A. Tveito. „On the use of st-segment shifts and mathematical models for identifying ischemic heart disease“. In Computers in Cardiology, 2005. IEEE, 2005. http://dx.doi.org/10.1109/cic.2005.1588280.
Der volle Inhalt der QuelleElliott, Novak S. J. „Cerebrospinal Fluid-Structure Interactions: The Development of Mathematical Models Accessible to Clinicians“. In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-29096.
Der volle Inhalt der QuelleTakada, M., M. Sugimoto, N. Masuda, H. Iwata, K. Kuroi, H. Yamashiro, S. Ohno, H. Ishiguro, T. Inamoto und M. Toi. „Abstract P4-21-24: Development of mathematical prediction models to identify disease-free survival events for HER2-positive primary breast cancer patients treated by neoadjuvant chemotherapy and trastuzumab“. In Abstracts: 2016 San Antonio Breast Cancer Symposium; December 6-10, 2016; San Antonio, Texas. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.sabcs16-p4-21-24.
Der volle Inhalt der QuelleLundberg, Hannah J., Kharma C. Foucher, Thomas P. Andriacchi und Markus A. Wimmer. „Comparison of Numerically Modeled Knee Joint Contact Forces to Instrumented Total Knee Prosthesis Forces“. In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206791.
Der volle Inhalt der QuelleRugonyi, Sandra, und Kent Thornburg. „Modeling the Effect of Hemodynamics on Cardiac Growth During Embryonic Development“. In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13171.
Der volle Inhalt der QuelleBazilo, Constantine, Alvydas Zagorskis, Oleg Petrishchev, Yulia Bondarenko, Vasyl Zaika und Yulia Petrushko. „Modelling of Piezoelectric Transducers for Environmental Monitoring“. In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.008.
Der volle Inhalt der QuelleChagdes, James R., Joshua J. Liddy, Jessica E. Huber, Howard N. Zelaznik, Shirley Rietdyk, Arvind Raman und Jeffrey M. Haddad. „Dynamic Instabilities Induced Through Altered Visual Cues and Their Relationship to Postural Response Latencies“. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60248.
Der volle Inhalt der QuelleHossain, Md Shahadat, Bhavin Dalal, Ian S. Fischer, Pushpendra Singh und Nadine Aubry. „Modeling of Blood Flow in the Human Brain“. In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30554.
Der volle Inhalt der Quelle