Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Learning with Limited Data“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Learning with Limited Data" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Learning with Limited Data"
Oh, Se Eun, Nate Mathews, Mohammad Saidur Rahman, Matthew Wright und Nicholas Hopper. „GANDaLF: GAN for Data-Limited Fingerprinting“. Proceedings on Privacy Enhancing Technologies 2021, Nr. 2 (29.01.2021): 305–22. http://dx.doi.org/10.2478/popets-2021-0029.
Der volle Inhalt der QuelleTriantafillou, Sofia, und Greg Cooper. „Learning Adjustment Sets from Observational and Limited Experimental Data“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 11 (18.05.2021): 9940–48. http://dx.doi.org/10.1609/aaai.v35i11.17194.
Der volle Inhalt der QuelleZhao, Yao, Dong Joo Rhee, Carlos Cardenas, Laurence E. Court und Jinzhong Yang. „Training deep‐learning segmentation models from severely limited data“. Medical Physics 48, Nr. 4 (19.02.2021): 1697–706. http://dx.doi.org/10.1002/mp.14728.
Der volle Inhalt der QuelleKim, Minjeong, Yujung Gil, Yuyeon Kim und Jihie Kim. „Deep-Learning-Based Scalp Image Analysis Using Limited Data“. Electronics 12, Nr. 6 (14.03.2023): 1380. http://dx.doi.org/10.3390/electronics12061380.
Der volle Inhalt der QuelleChen, Jiaao, Derek Tam, Colin Raffel, Mohit Bansal und Diyi Yang. „An Empirical Survey of Data Augmentation for Limited Data Learning in NLP“. Transactions of the Association for Computational Linguistics 11 (2023): 191–211. http://dx.doi.org/10.1162/tacl_a_00542.
Der volle Inhalt der QuelleHan, Te, Chao Liu, Rui Wu und Dongxiang Jiang. „Deep transfer learning with limited data for machinery fault diagnosis“. Applied Soft Computing 103 (Mai 2021): 107150. http://dx.doi.org/10.1016/j.asoc.2021.107150.
Der volle Inhalt der QuelleJi, Xuefei, Jue Wang, Ye Li, Qiang Sun, Shi Jin und Tony Q. S. Quek. „Data-Limited Modulation Classification With a CVAE-Enhanced Learning Model“. IEEE Communications Letters 24, Nr. 10 (Oktober 2020): 2191–95. http://dx.doi.org/10.1109/lcomm.2020.3004877.
Der volle Inhalt der QuelleForestier, Germain, und Cédric Wemmert. „Semi-supervised learning using multiple clusterings with limited labeled data“. Information Sciences 361-362 (September 2016): 48–65. http://dx.doi.org/10.1016/j.ins.2016.04.040.
Der volle Inhalt der QuelleWen, Jiahui, und Zhiying Wang. „Learning general model for activity recognition with limited labelled data“. Expert Systems with Applications 74 (Mai 2017): 19–28. http://dx.doi.org/10.1016/j.eswa.2017.01.002.
Der volle Inhalt der QuelleZhang, Ansi, Shaobo Li, Yuxin Cui, Wanli Yang, Rongzhi Dong und Jianjun Hu. „Limited Data Rolling Bearing Fault Diagnosis With Few-Shot Learning“. IEEE Access 7 (2019): 110895–904. http://dx.doi.org/10.1109/access.2019.2934233.
Der volle Inhalt der QuelleDissertationen zum Thema "Learning with Limited Data"
Chen, Si. „Active Learning Under Limited Interaction with Data Labeler“. Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104894.
Der volle Inhalt der QuelleM.S.
Machine Learning (ML) has achieved huge success in recent years. Machine Learning technologies such as recommendation system, speech recognition and image recognition play an important role on human daily life. This success mainly build upon the use of large amount of labeled data: Compared with traditional programming, a ML algorithm does not rely on explicit instructions from human; instead, it takes the data along with the label as input, and aims to learn a function that can correctly map data to the label space by itself. However, data labeling requires human effort and could be time-consuming and expensive especially for datasets that contain domain-specific knowledge (e.g., disease prediction etc.) Active Learning (AL) is one of the solution to reduce data labeling effort. Specifically, the learning algorithm actively selects data points that provide more information for the model, hence a better model can be achieved with less labeled data. While traditional AL strategies do achieve good performance, it requires a small amount of labeled data as initialization and performs data selection in multi-round, which pose great challenge to its application, as there is no platform provide timely online interaction with data labeler and the interaction is often time inefficient. To deal with the limitations, we first propose DULO which a new setting of AL is studied: data selection is only allowed to be performed once. To further broaden the application of our method, we propose D²ULO which is built upon DULO and Domain Adaptation techniques to avoid the use of initial labeled data. Our experiments show that both of the proposed two frameworks achieve better performance compared with state-of-the-art baselines.
Dvornik, Mikita. „Learning with Limited Annotated Data for Visual Understanding“. Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM050.
Der volle Inhalt der QuelleThe ability of deep-learning methods to excel in computer vision highly depends on the amount of annotated data available for training. For some tasks, annotation may be too costly and labor intensive, thus becoming the main obstacle to better accuracy. Algorithms that learn from data automatically, without human supervision, perform substantially worse than their fully-supervised counterparts. Thus, there is a strong motivation to work on effective methods for learning with limited annotations. This thesis proposes to exploit prior knowledge about the task and develops more effective solutions for scene understanding and few-shot image classification.Main challenges of scene understanding include object detection, semantic and instance segmentation. Similarly, all these tasks aim at recognizing and localizing objects, at region- or more precise pixel-level, which makes the annotation process difficult. The first contribution of this manuscript is a Convolutional Neural Network (CNN) that performs both object detection and semantic segmentation. We design a specialized network architecture, that is trained to solve both problems in one forward pass, and operates in real-time. Thanks to the multi-task training procedure, both tasks benefit from each other in terms of accuracy, with no extra labeled data.The second contribution introduces a new technique for data augmentation, i.e., artificially increasing the amount of training data. It aims at creating new scenes by copy-pasting objects from one image to another, within a given dataset. Placing an object in a right context was found to be crucial in order to improve scene understanding performance. We propose to model visual context explicitly using a CNN that discovers correlations between object categories and their typical neighborhood, and then proposes realistic locations for augmentation. Overall, pasting objects in ``right'' locations allows to improve object detection and segmentation performance, with higher gains in limited annotation scenarios.For some problems, the data is extremely scarce, and an algorithm has to learn new concepts from a handful of examples. Few-shot classification consists of learning a predictive model that is able to effectively adapt to a new class, given only a few annotated samples. While most current methods concentrate on the adaptation mechanism, few works have tackled the problem of scarce training data explicitly. In our third contribution, we show that by addressing the fundamental high-variance issue of few-shot learning classifiers, it is possible to significantly outperform more sophisticated existing techniques. Our approach consists of designing an ensemble of deep networks to leverage the variance of the classifiers, and introducing new strategies to encourage the networks to cooperate, while encouraging prediction diversity. By matching different networks outputs on similar input images, we improve model accuracy and robustness, comparing to classical ensemble training. Moreover, a single network obtained by distillation shows similar to the full ensemble performance and yields state-of-the-art results with no computational overhead at test time
Moskvyak, Olga. „Learning from limited annotated data for re-identification problem“. Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/226866/1/Olga_Moskvyak_Thesis.pdf.
Der volle Inhalt der QuelleXian, Yongqin [Verfasser]. „Learning from limited labeled data - Zero-Shot and Few-Shot Learning / Yongqin Xian“. Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1219904457/34.
Der volle Inhalt der QuelleEriksson, Håkan. „Clustering Generic Log Files Under Limited Data Assumptions“. Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189642.
Der volle Inhalt der QuelleKomplexa datorsystem är ofta benägna att uppvisa anormalt eller felaktigt beteende, vilket kan leda till kostsamma driftstopp under tiden som systemen diagnosticeras och repareras. En informationskälla till feldiagnosticeringen är loggfiler, vilka ofta genereras i stora mängder och av olika typer. Givet loggfilernas storlek och semistrukturerade utseende så blir en manuell analys orimlig att genomföra. Viss automatisering är önsvkärd för att sovra bland loggfilerna så att källan till felen och anormaliteterna blir enklare att upptäcka. Det här projektet syftade till att utveckla en generell algoritm som kan klustra olikartade loggfiler i enlighet med domänexpertis. Resultaten visar att algoritmen presterar väl i enlighet med manuell klustring även med färre antaganden om datan.
Boman, Jimmy. „A deep learning approach to defect detection with limited data availability“. Thesis, Umeå universitet, Institutionen för fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-173207.
Der volle Inhalt der QuelleGuo, Zhenyu. „Data famine in big data era : machine learning algorithms for visual object recognition with limited training data“. Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/46412.
Der volle Inhalt der QuelleAyllon, Clemente Irene [Verfasser]. „Towards natural speech acquisition: incremental word learning with limited data / Irene Ayllon Clemente“. Bielefeld : Universitätsbibliothek Bielefeld, 2013. http://d-nb.info/1077063458/34.
Der volle Inhalt der QuelleChang, Fengming. „Learning accuracy from limited data using mega-fuzzification method to improve small data set learning accuracy for early flexible manufacturing system scheduling“. Saarbrücken VDM Verlag Dr. Müller, 2005. http://d-nb.info/989267156/04.
Der volle Inhalt der QuelleTania, Zannatun Nayem. „Machine Learning with Reconfigurable Privacy on Resource-Limited Edge Computing Devices“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292105.
Der volle Inhalt der QuelleDistribuerad databehandling möjliggör effektiv datalagring, bearbetning och hämtning men det medför säkerhets- och sekretessproblem. Sensorer är hörnstenen i de IoT-baserade rörledningarna, eftersom de ständigt samlar in data tills de kan analyseras på de centrala molnresurserna. Dessa sensornoder begränsas dock ofta av begränsade resurser. Helst är det önskvärt att göra alla insamlade datafunktioner privata, men på grund av resursbegränsningar kanske det inte alltid är möjligt. Att göra alla funktioner privata kan orsaka överutnyttjande av resurser, vilket i sin tur skulle påverka prestanda för hela systemet. I denna avhandling designar och implementerar vi ett system som kan hitta den optimala uppsättningen datafunktioner för att göra privata, med tanke på begränsningar av enhetsresurserna och systemets önskade prestanda eller noggrannhet. Med hjälp av generaliseringsteknikerna för data-anonymisering skapar vi användardefinierade injicerbara sekretess-kodningsfunktioner för att göra varje funktion i datasetet privat. Oavsett resurstillgänglighet definieras vissa datafunktioner av användaren som viktiga funktioner för att göra privat. Alla andra datafunktioner som kan utgöra ett integritetshot kallas de icke-väsentliga funktionerna. Vi föreslår Dynamic Iterative Greedy Search (DIGS), en girig sökalgoritm som tar resursförbrukningen för varje icke-väsentlig funktion som inmatning och ger den mest optimala uppsättningen icke-väsentliga funktioner som kan vara privata med tanke på tillgängliga resurser. Den mest optimala uppsättningen innehåller de funktioner som förbrukar minst resurser. Vi utvärderar vårt system på en Fitbit-dataset som innehåller 17 datafunktioner, varav 4 är viktiga privata funktioner för en viss klassificeringsapplikation. Våra resultat visar att vi kan erbjuda ytterligare 9 privata funktioner förutom de 4 viktiga funktionerna i Fitbit-datasetet som innehåller 1663 poster. Dessutom kan vi spara 26; 21% minne jämfört med att göra alla funktioner privata. Vi testar också vår metod på en större dataset som genereras med Generative Adversarial Network (GAN). Den valda kantenheten, Raspberry Pi, kan dock inte tillgodose storleken på den stora datasetet på grund av otillräckliga resurser. Våra utvärderingar med 1=8th av GAN-datasetet resulterar i 3 extra privata funktioner med upp till 62; 74% minnesbesparingar jämfört med alla privata datafunktioner. Att upprätthålla integritet kräver inte bara ytterligare resurser utan har också konsekvenser för de designade applikationernas prestanda. Vi upptäcker dock att integritetskodning har en positiv inverkan på noggrannheten i klassificeringsmodellen för vår valda klassificeringsapplikation.
Bücher zum Thema "Learning with Limited Data"
Zamzmi, Ghada, Sameer Antani, Ulas Bagci, Marius George Linguraru, Sivaramakrishnan Rajaraman und Zhiyun Xue, Hrsg. Medical Image Learning with Limited and Noisy Data. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-16760-7.
Der volle Inhalt der QuelleXue, Zhiyun, Sameer Antani, Ghada Zamzmi, Feng Yang, Sivaramakrishnan Rajaraman, Sharon Xiaolei Huang, Marius George Linguraru und Zhaohui Liang, Hrsg. Medical Image Learning with Limited and Noisy Data. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44917-8.
Der volle Inhalt der QuelleFisher, Doug, und Hans-J. Lenz, Hrsg. Learning from Data. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-2404-4.
Der volle Inhalt der QuelleBig learning data. Alexandria, VA: ASTD Press, 2014.
Den vollen Inhalt der Quelle findenHartemink, Alfred E., Alex McBratney und Maria de Lourdes Mendonça-Santos, Hrsg. Digital Soil Mapping with Limited Data. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8592-5.
Der volle Inhalt der Quelle1964-, Hartemink Alfred E., McBratney A. B und Mendonça-Santos Maria de Lourdes, Hrsg. Digital soil mapping with limited data. Dordrecht: Springer, 2008.
Den vollen Inhalt der Quelle findenVelleman, Paul F. Learning data analysis with Data desk. New York: W.H. Freeman, 1993.
Den vollen Inhalt der Quelle findenLearning data analysis with Data desk. New York: W.H. Freeman, 1989.
Den vollen Inhalt der Quelle findenVNU Entertainment Media UK Limited and Book Data Limited: A report on the acquisition by VNU Entertainment Media UK Limited of Book Data Limited. London: Stationery Office, 2003.
Den vollen Inhalt der Quelle findenDean, Jared. Big Data, Data Mining, and Machine Learning. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118691786.
Der volle Inhalt der QuelleBuchteile zum Thema "Learning with Limited Data"
Bennett, James, Kitty Kautzer und Leila Casteel. „Analyzing question items with limited data“. In Data Analytics and Adaptive Learning, 230–41. New York: Routledge, 2023. http://dx.doi.org/10.4324/9781003244271-16.
Der volle Inhalt der QuelleHe, Xiangyu, und Jian Cheng. „Learning Compression from Limited Unlabeled Data“. In Computer Vision – ECCV 2018, 778–95. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01246-5_46.
Der volle Inhalt der QuelleChen, Shurui, Yufu Chen, Yuyin Lu, Yanghui Rao, Haoran Xie und Qing Li. „Chinese Word Embedding Learning with Limited Data“. In Web and Big Data, 211–26. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85896-4_18.
Der volle Inhalt der QuelleWang, Li-C. „Learning from Limited Data in VLSI CAD“. In Machine Learning in VLSI Computer-Aided Design, 375–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04666-8_13.
Der volle Inhalt der QuelleChan, Yung-Chieh, Jerry Zhang, Katie Frizzi, Nigel Calcutt und Garrison Cottrell. „Automated Skin Biopsy Analysis with Limited Data“. In Medical Image Learning with Limited and Noisy Data, 229–38. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-16760-7_22.
Der volle Inhalt der QuelleRamlan, Fitria Wulandari, und James McDermott. „Genetic Programming with Synthetic Data for Interpretable Regression Modelling and Limited Data“. In Machine Learning, Optimization, and Data Science, 142–57. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53969-5_12.
Der volle Inhalt der QuelleVu, Tu Thanh, Giang Binh Tran und Son Bao Pham. „Learning to Simplify Children Stories with Limited Data“. In Intelligent Information and Database Systems, 31–41. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05476-6_4.
Der volle Inhalt der QuelleNguyen, Minh-Tien, Viet-Anh Phan, Le Thai Linh, Nguyen Hong Son, Le Tien Dung, Miku Hirano und Hajime Hotta. „Transfer Learning for Information Extraction with Limited Data“. In Communications in Computer and Information Science, 469–82. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6168-9_38.
Der volle Inhalt der QuelleJain, Sanjay, und Efim Kinber. „On Learning Languages from Positive Data and a Limited Number of Short Counterexamples“. In Learning Theory, 259–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11776420_21.
Der volle Inhalt der QuelleLiu, Alex X., und Rui Li. „Differentially Private and Budget Limited Bandit Learning over Matroids“. In Algorithms for Data and Computation Privacy, 347–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58896-0_13.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Learning with Limited Data"
Malaviya, Maya, Ilia Sucholutsky und Thomas L. Griffiths. „Pushing the Limits of Learning from Limited Data“. In 2023 Conference on Cognitive Computational Neuroscience. Oxford, United Kingdom: Cognitive Computational Neuroscience, 2023. http://dx.doi.org/10.32470/ccn.2023.1583-0.
Der volle Inhalt der QuelleYang, Diyi, Ankur Parikh und Colin Raffel. „Learning with Limited Text Data“. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts. Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.acl-tutorials.5.
Der volle Inhalt der QuelleKhoshgoftaar, Taghi M., Chris Seiffert, Jason Van Hulse, Amri Napolitano und Andres Folleco. „Learning with limited minority class data“. In Sixth International Conference on Machine Learning and Applications (ICMLA 2007). IEEE, 2007. http://dx.doi.org/10.1109/icmla.2007.76.
Der volle Inhalt der QuelleChang, Shiyu, Charu C. Aggarwal und Thomas S. Huang. „Learning Local Semantic Distances with Limited Supervision“. In 2014 IEEE International Conference on Data Mining (ICDM). IEEE, 2014. http://dx.doi.org/10.1109/icdm.2014.114.
Der volle Inhalt der QuelleSelf, Ryan, S. M. Nahid Mahmud, Katrine Hareland und Rushikesh Kamalapurkar. „Online inverse reinforcement learning with limited data“. In 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020. http://dx.doi.org/10.1109/cdc42340.2020.9303883.
Der volle Inhalt der QuelleChen, Hanlin, und Peng Cao. „Deep Learning Based Data Augmentation and Classification for Limited Medical Data Learning“. In 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). IEEE, 2019. http://dx.doi.org/10.1109/icpics47731.2019.8942411.
Der volle Inhalt der QuelleLee, Kyungjae, Sunghyun Park, Hojae Han, Jinyoung Yeo, Seung-won Hwang und Juho Lee. „Learning with Limited Data for Multilingual Reading Comprehension“. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/d19-1283.
Der volle Inhalt der QuelleLiu, Feng, Fengzhan Tian und Qiliang Zhu. „Ensembling Bayesian network structure learning on limited data“. In the sixteenth ACM conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1321440.1321577.
Der volle Inhalt der QuelleMitchell, Frost, Aniqua Baset, Neal Patwari, Sneha Kumar Kasera und Aditya Bhaskara. „Deep Learning-based Localization in Limited Data Regimes“. In WiSec '22: 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3522783.3529529.
Der volle Inhalt der QuelleIosifidis, Vasileios, und Eirini Ntoutsi. „Large Scale Sentiment Learning with Limited Labels“. In KDD '17: The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3097983.3098159.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Learning with Limited Data"
Safta, Cosmin, Kookjin Lee und Jaideep Ray. Predictive Skill of Deep Learning Models Trained on Limited Sequence Data. Office of Scientific and Technical Information (OSTI), Oktober 2020. http://dx.doi.org/10.2172/1688570.
Der volle Inhalt der QuelleRhoades, Alan, und Ankur Mahesh. Title:Machine learning to generate gridded extreme precipitation data sets for global land areas with limited in situ measurements. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769784.
Der volle Inhalt der QuelleCassity, Elizabeth, und Debbie Wong. Teacher development multi-year studies. Insights on the challenges of data availability for measuring and reporting on student learning outcomes. Australian Council for Educational Research, 2022. http://dx.doi.org/10.37517/978-1-74286-677-2.
Der volle Inhalt der QuelleSukumar, Sreenivas R., und Carlos Emilio Del-Castillo-Negrete. Machine Learning for Big Data: A Study to Understand Limits at Scale. Office of Scientific and Technical Information (OSTI), Dezember 2015. http://dx.doi.org/10.2172/1234336.
Der volle Inhalt der QuelleChoquette, Gary. PR-000-16209-WEB Data Management Best Practices Learned from CEPM. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2019. http://dx.doi.org/10.55274/r0011568.
Der volle Inhalt der QuelleOgenyi, Moses. Looking back on Nigeria’s COVID-19 School Closures: Effects of Parental Investments on Learning Outcomes and Avoidance of Hysteresis in Education. Research on Improving Systems of Education (RISE), März 2022. http://dx.doi.org/10.35489/bsg-rise-ri_2022/040.
Der volle Inhalt der QuelleAsgedom, Amare, Shelby Carvalho und Pauline Rose. Negotiating Equity: Examining Priorities, Ownership, and Politics Shaping Ethiopia’s Large-Scale Education Reforms for Equitable Learning. Research on Improving Systems of Education (RISE), März 2020. http://dx.doi.org/10.35489/bsg-rise-wp_2021/067.
Der volle Inhalt der QuelleBergeron, Augustin, Arnaud Fournier, John Kabeya Kabeya, Gabriel Tourek und Jonathan L. Weigel. Using Machine Learning to Create a Property Tax Roll: Evidence from the City of Kananga, DR Congo'. Institute of Development Studies, Oktober 2023. http://dx.doi.org/10.19088/ictd.2023.053.
Der volle Inhalt der QuelleMahat, Marian, Vivienne Awad, Christopher Bradbeer, Chengxin Guo, Wesley Imms und Julia Morris. Furniture for Engagement. University of Melbourne, Februar 2023. http://dx.doi.org/10.46580/124374.
Der volle Inhalt der QuelleQuak, Evert-Jan. K4D’s Work on the Indirect Impacts of COVID-19 in Low- and Middle- Income Countries. Institute of Development Studies (IDS), Juni 2021. http://dx.doi.org/10.19088/k4d.2021.093.
Der volle Inhalt der Quelle