Zeitschriftenartikel zum Thema „Learning artifact“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Learning artifact" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Fahrenbach, Florian, Kate Revoredo und Flavia Maria Santoro. „Valuing prior learning“. European Journal of Training and Development 44, Nr. 2/3 (12.12.2019): 209–35. http://dx.doi.org/10.1108/ejtd-05-2019-0070.
Der volle Inhalt der QuelleKromrey, M. L., D. Tamada, H. Johno, S. Funayama, N. Nagata, S. Ichikawa, J. P. Kühn, H. Onishi und U. Motosugi. „Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning–based filter using convolutional neural network“. European Radiology 30, Nr. 11 (17.06.2020): 5923–32. http://dx.doi.org/10.1007/s00330-020-07006-1.
Der volle Inhalt der QuelleHasasneh, Ahmad, Nikolas Kampel, Praveen Sripad, N. Jon Shah und Jürgen Dammers. „Deep Learning Approach for Automatic Classification of Ocular and Cardiac Artifacts in MEG Data“. Journal of Engineering 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/1350692.
Der volle Inhalt der QuelleDeepika, J., T. Senthil, C. Rajan und A. Surendar. „Machine learning algorithms: a background artifact“. International Journal of Engineering & Technology 7, Nr. 1.1 (21.12.2017): 143. http://dx.doi.org/10.14419/ijet.v7i1.1.9214.
Der volle Inhalt der QuelleGraffieti, Gabriele, und Davide Maltoni. „Artifact-Free Single Image Defogging“. Atmosphere 12, Nr. 5 (29.04.2021): 577. http://dx.doi.org/10.3390/atmos12050577.
Der volle Inhalt der QuelleLee, Seung-Bo, Hakseung Kim, Young-Tak Kim, Frederick A. Zeiler, Peter Smielewski, Marek Czosnyka und Dong-Joo Kim. „Artifact removal from neurophysiological signals: impact on intracranial and arterial pressure monitoring in traumatic brain injury“. Journal of Neurosurgery 132, Nr. 6 (Juni 2020): 1952–60. http://dx.doi.org/10.3171/2019.2.jns182260.
Der volle Inhalt der QuelleWu, Chao, Xiaonan Zhao, Mark Welsh, Kellianne Costello, Kajia Cao, Ahmad Abou Tayoun, Marilyn Li und Mahdi Sarmady. „Using Machine Learning to Identify True Somatic Variants from Next-Generation Sequencing“. Clinical Chemistry 66, Nr. 1 (30.12.2019): 239–46. http://dx.doi.org/10.1373/clinchem.2019.308213.
Der volle Inhalt der QuelleWeiss, Dennis M. „Learning to be human with sociable robots“. Paladyn, Journal of Behavioral Robotics 11, Nr. 1 (18.02.2020): 19–30. http://dx.doi.org/10.1515/pjbr-2020-0002.
Der volle Inhalt der QuelleBedi, Pradeep, S. B. Goyal, Dileep Kumar Yadav, Sunil Kumar und Monika Sharma. „Hybrid Learning Model for Metal Artifact Reduction“. Journal of Physics: Conference Series 1714 (Januar 2021): 012021. http://dx.doi.org/10.1088/1742-6596/1714/1/012021.
Der volle Inhalt der QuelleParmaxi, Antigoni, und Panayiotis Zaphiris. „Emerging Technologies for Artifact Construction in Learning“. Computers in Human Behavior 99 (Oktober 2019): 366–67. http://dx.doi.org/10.1016/j.chb.2019.05.034.
Der volle Inhalt der QuelleShvarts, Anna, Rosa Alberto, Arthur Bakker, Michiel Doorman und Paul Drijvers. „Embodied instrumentation in learning mathematics as the genesis of a body-artifact functional system“. Educational Studies in Mathematics 107, Nr. 3 (03.06.2021): 447–69. http://dx.doi.org/10.1007/s10649-021-10053-0.
Der volle Inhalt der QuelleJiang, Hao, John M. Carroll und Roderick Lee. „Extending the task-artifact framework with organizational learning“. Knowledge and Process Management 17, Nr. 1 (Januar 2010): 22–35. http://dx.doi.org/10.1002/kpm.338.
Der volle Inhalt der QuelleWalker, Caren M., Alexandra Rett und Elizabeth Bonawitz. „Design Drives Discovery in Causal Learning“. Psychological Science 31, Nr. 2 (21.01.2020): 129–38. http://dx.doi.org/10.1177/0956797619898134.
Der volle Inhalt der QuelleIslind, Anna Sigridur, und Ulrika Lundh Snis. „Learning in home care: a digital artifact as a designated boundary object-in-use“. Journal of Workplace Learning 29, Nr. 7/8 (11.09.2017): 577–87. http://dx.doi.org/10.1108/jwl-04-2016-0027.
Der volle Inhalt der QuelleFeng, Yulong, Wei Xiao, Teng Wu, Jianwei Zhang, Jing Xiang und Hong Guo. „An Automatic Identification Method for the Blink Artifacts in the Magnetoencephalography with Machine Learning“. Applied Sciences 11, Nr. 5 (09.03.2021): 2415. http://dx.doi.org/10.3390/app11052415.
Der volle Inhalt der QuelleTANAKA, Shinnosuke, und Etsuko T. HARADA. „The effect of older adults' timidity to use new artifacts on learning how to use artifact“. Proceedings of the Annual Convention of the Japanese Psychological Association 77 (19.09.2013): 3AM—086–3AM—086. http://dx.doi.org/10.4992/pacjpa.77.0_3am-086.
Der volle Inhalt der QuelleGhani, Muhammad Usman, und W. Clem Karl. „Deep Learning Based Sinogram Correction for Metal Artifact Reduction“. Electronic Imaging 2018, Nr. 15 (28.01.2018): 472–1. http://dx.doi.org/10.2352/issn.2470-1173.2018.15.coimg-472.
Der volle Inhalt der QuelleHan, Yoseob, Junyoung Kim und Jong Chul Ye. „Differentiated Backprojection Domain Deep Learning for Conebeam Artifact Removal“. IEEE Transactions on Medical Imaging 39, Nr. 11 (November 2020): 3571–82. http://dx.doi.org/10.1109/tmi.2020.3000341.
Der volle Inhalt der QuelleMachado, Juliano, Amauri Machado und Alexandre Balbinot. „Deep learning for surface electromyography artifact contamination type detection“. Biomedical Signal Processing and Control 68 (Juli 2021): 102752. http://dx.doi.org/10.1016/j.bspc.2021.102752.
Der volle Inhalt der QuelleVu, Tri, Mucong Li, Hannah Humayun, Yuan Zhou und Junjie Yao. „A generative adversarial network for artifact removal in photoacoustic computed tomography with a linear-array transducer“. Experimental Biology and Medicine 245, Nr. 7 (25.03.2020): 597–605. http://dx.doi.org/10.1177/1535370220914285.
Der volle Inhalt der QuelleHasibuan, Henny Triyana, Danardana Murwani, Sri Umi Mientarti Widjaja und Mit Witjaksono. „Accounting Training Module Development to Boost Agriculture Financial Literacy on Palm Farmers“. International Education Studies 10, Nr. 9 (27.08.2017): 78. http://dx.doi.org/10.5539/ies.v10n9p78.
Der volle Inhalt der QuelleWolfer, David P., Marijana Stagljar-Bozicevic, Mick L. Errington und Hans-Peter Lipp. „Spatial Memory and Learning in Transgenic Mice: Fact or Artifact?“ Physiology 13, Nr. 3 (Juni 1998): 118–23. http://dx.doi.org/10.1152/physiologyonline.1998.13.3.118.
Der volle Inhalt der QuelleArtiemjew, Piotr, Agnieszka Chojka und Jacek Rapiński. „Deep Learning for RFI Artifact Recognition in Sentinel-1 Data“. Remote Sensing 13, Nr. 1 (22.12.2020): 7. http://dx.doi.org/10.3390/rs13010007.
Der volle Inhalt der QuelleLi, Xinyang, Cuntai Guan, Haihong Zhang und Kai Keng Ang. „Discriminative Ocular Artifact Correction for Feature Learning in EEG Analysis“. IEEE Transactions on Biomedical Engineering 64, Nr. 8 (August 2017): 1906–13. http://dx.doi.org/10.1109/tbme.2016.2628958.
Der volle Inhalt der QuelleMcIntosh, James R., Jiaang Yao, Linbi Hong, Josef Faller und Paul Sajda. „Ballistocardiogram Artifact Reduction in Simultaneous EEG-fMRI Using Deep Learning“. IEEE Transactions on Biomedical Engineering 68, Nr. 1 (Januar 2021): 78–89. http://dx.doi.org/10.1109/tbme.2020.3004548.
Der volle Inhalt der QuelleChen, Yang, Luyao Shi, Qianjing Feng, Jian Yang, Huazhong Shu, Limin Luo, Jean-Louis Coatrieux und Wufan Chen. „Artifact Suppressed Dictionary Learning for Low-Dose CT Image Processing“. IEEE Transactions on Medical Imaging 33, Nr. 12 (Dezember 2014): 2271–92. http://dx.doi.org/10.1109/tmi.2014.2336860.
Der volle Inhalt der QuelleHammerl, Marianne, und Hans-Joachim Grabitz. „Affective-Evaluative Learning in Humans: A Form of Associative Learning or Only an Artifact?“ Learning and Motivation 31, Nr. 4 (November 2000): 345–63. http://dx.doi.org/10.1006/lmot.2000.1059.
Der volle Inhalt der QuelleRyu, Kyeong Hwa, Hye Jin Baek, Sung-Min Gho, Kanghyun Ryu, Dong-Hyun Kim, Sung Eun Park, Ji Young Ha, Soo Buem Cho und Joon Sung Lee. „Validation of Deep Learning-Based Artifact Correction on Synthetic FLAIR Images in a Different Scanning Environment“. Journal of Clinical Medicine 9, Nr. 2 (29.01.2020): 364. http://dx.doi.org/10.3390/jcm9020364.
Der volle Inhalt der QuelleSjödén, Per-Olow, und Trevor Archer. „Exteroceptive cues in taste-aversion learning, no artifact: Reply to Holder“. Animal Learning & Behavior 16, Nr. 2 (Juni 1988): 235–39. http://dx.doi.org/10.3758/bf03209071.
Der volle Inhalt der QuelleLossau (née Elss), T., H. Nickisch, T. Wissel, M. Morlock und M. Grass. „Learning metal artifact reduction in cardiac CT images with moving pacemakers“. Medical Image Analysis 61 (April 2020): 101655. http://dx.doi.org/10.1016/j.media.2020.101655.
Der volle Inhalt der QuelleAllman, Derek, Austin Reiter und Muyinatu A. Lediju Bell. „Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning“. IEEE Transactions on Medical Imaging 37, Nr. 6 (Juni 2018): 1464–77. http://dx.doi.org/10.1109/tmi.2018.2829662.
Der volle Inhalt der QuelleWong, Lung-Hsiang, Ching Sing Chai, Guat Poh Aw und Ronnel B. King. „Enculturating seamless language learning through artifact creation and social interaction process“. Interactive Learning Environments 23, Nr. 2 (04.03.2015): 130–57. http://dx.doi.org/10.1080/10494820.2015.1016534.
Der volle Inhalt der QuelleYoo, Tae Keun, Joon Yul Choi und Hong Kyu Kim. „CycleGAN-based deep learning technique for artifact reduction in fundus photography“. Graefe's Archive for Clinical and Experimental Ophthalmology 258, Nr. 8 (02.05.2020): 1631–37. http://dx.doi.org/10.1007/s00417-020-04709-5.
Der volle Inhalt der QuelleAbolghasemi, Vahid, und Saideh Ferdowsi. „EEG–fMRI: Dictionary learning for removal of ballistocardiogram artifact from EEG“. Biomedical Signal Processing and Control 18 (April 2015): 186–94. http://dx.doi.org/10.1016/j.bspc.2015.01.001.
Der volle Inhalt der QuelleGhani, Muhammad Usman, und W. Clem Karl. „Fast Enhanced CT Metal Artifact Reduction Using Data Domain Deep Learning“. IEEE Transactions on Computational Imaging 6 (2020): 181–93. http://dx.doi.org/10.1109/tci.2019.2937221.
Der volle Inhalt der QuelleFlemin, David. „Learning to Link Artifact and Value: The Arguments of Student Designers“. Language and Learning Across the Disciplines 2, Nr. 1 (1997): 58–84. http://dx.doi.org/10.37514/lld-j.1997.2.1.05.
Der volle Inhalt der QuelleTsukamoto, Hikari, und Isao Muro. „Development of Motion Artifact Generator for Deep Learning in Brain MRI“. Japanese Journal of Radiological Technology 77, Nr. 5 (2021): 463–70. http://dx.doi.org/10.6009/jjrt.2021_jsrt_77.5.463.
Der volle Inhalt der QuelleAbdi, Mohamad, Xue Feng, Changyu Sun, Kenneth C. Bilchick, Craig H. Meyer und Frederick H. Epstein. „Suppression of artifact‐generating echoes in cine DENSE using deep learning“. Magnetic Resonance in Medicine 86, Nr. 4 (22.05.2021): 2095–104. http://dx.doi.org/10.1002/mrm.28832.
Der volle Inhalt der QuelleKhan, Shujaat, Jaeyoung Huh und Jong Chul Ye. „Variational Formulation of Unsupervised Deep Learning for Ultrasound Image Artifact Removal“. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 68, Nr. 6 (Juni 2021): 2086–100. http://dx.doi.org/10.1109/tuffc.2021.3056197.
Der volle Inhalt der QuelleMottron, Laurent, und Danilo Bzdok. „Autism spectrum heterogeneity: fact or artifact?“ Molecular Psychiatry 25, Nr. 12 (30.04.2020): 3178–85. http://dx.doi.org/10.1038/s41380-020-0748-y.
Der volle Inhalt der QuelleSidyawati, Lisa, Joni Agung Sudarmanto, Abdul Rahman Prasetyo und Encik Muhammad Hawari Bin Berahim. „NUSANTARA MASK HERITAGE MALAYSIA: INFOGRAPHIC APPLICATION DEVELOPMENT OF MASKS OF MALAYSIAN INDIGENOUS TRIBES AT THE MUSEUM OF ASIAN ART MALAYSIA BASED ON AUGMENTED REALITY AS MEDIA OF TOURISM EDUCATION“. Jurnal IPTA 7, Nr. 2 (30.12.2019): 163. http://dx.doi.org/10.24843/ipta.2019.v07.i02.p07.
Der volle Inhalt der QuelleKanoga, Suguru, Atsunori Kanemura und Hideki Asoh. „Multi-scale dictionary learning for ocular artifact reduction from single-channel electroencephalograms“. Neurocomputing 347 (Juni 2019): 240–50. http://dx.doi.org/10.1016/j.neucom.2019.02.060.
Der volle Inhalt der QuelleMaloney, Tim Ryan. „Towards Quantifying Teaching and Learning in Prehistory Using Stone Artifact Reduction Sequences“. Lithic Technology 44, Nr. 1 (02.01.2019): 36–51. http://dx.doi.org/10.1080/01977261.2018.1564855.
Der volle Inhalt der QuelleWang, Yongbo, Yuting Liao, Yuanke Zhang, Ji He, Sui Li, Zhaoying Bian, Hao Zhang et al. „Iterative quality enhancement via residual-artifact learning networks for low-dose CT“. Physics in Medicine & Biology 63, Nr. 21 (23.10.2018): 215004. http://dx.doi.org/10.1088/1361-6560/aae511.
Der volle Inhalt der QuelleHsu, Hsiao-Ping, Zou Wenting und Joan E. Hughes. „Developing Elementary Students’ Digital Literacy Through Augmented Reality Creation: Insights From a Longitudinal Analysis of Questionnaires, Interviews, and Projects“. Journal of Educational Computing Research 57, Nr. 6 (29.08.2018): 1400–1435. http://dx.doi.org/10.1177/0735633118794515.
Der volle Inhalt der QuelleTanwar, Gatha, Ritu Chauhan und Eiad Yafi. „ARTYCUL: A Privacy-Preserving ML-Driven Framework to Determine the Popularity of a Cultural Exhibit on Display“. Sensors 21, Nr. 4 (22.02.2021): 1527. http://dx.doi.org/10.3390/s21041527.
Der volle Inhalt der QuelleMcAllister, Dianna, Mauro Mendez, Ariana Bermúdez und Pascal Tyrrell. „Visualization of Layers Within a Convolutional Neural Network Using Gradient Activation Maps“. Journal of Undergraduate Life Sciences 14, Nr. 1 (31.12.2020): 6. http://dx.doi.org/10.33137/juls.v14i1.35833.
Der volle Inhalt der QuelleSari, Winda Purnama, und Destri Ratna Ma'rifah. „PENGEMBANGAN LKPD MOBILE LEARNING BERBASIS ANDROID DENGAN PBL UNTUK MENINGKATKAN CRITICAL THINKING MATERI LINGKUNGAN“. Jurnal Pendidikan Biologi 11, Nr. 2 (15.04.2020): 49. http://dx.doi.org/10.17977/um052v11i2p49-58.
Der volle Inhalt der QuelleEryilmaz, Evren, Terry Ryan, Jakko Pol, Sumonta Kasemvilas und Justin Mary. „Fostering Quality and Flow of Online Learning Conversations by Artifact-Centered Discourse Systems“. Journal of the Association for Information Systems 14, Nr. 1 (Januar 2013): 22–48. http://dx.doi.org/10.17705/1jais.00321.
Der volle Inhalt der QuelleRadüntz, Thea, Jon Scouten, Olaf Hochmuth und Beate Meffert. „Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features“. Journal of Neural Engineering 14, Nr. 4 (12.05.2017): 046004. http://dx.doi.org/10.1088/1741-2552/aa69d1.
Der volle Inhalt der Quelle