Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Learning artifact“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Learning artifact" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Learning artifact"
Fahrenbach, Florian, Kate Revoredo und Flavia Maria Santoro. „Valuing prior learning“. European Journal of Training and Development 44, Nr. 2/3 (12.12.2019): 209–35. http://dx.doi.org/10.1108/ejtd-05-2019-0070.
Der volle Inhalt der QuelleKromrey, M. L., D. Tamada, H. Johno, S. Funayama, N. Nagata, S. Ichikawa, J. P. Kühn, H. Onishi und U. Motosugi. „Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning–based filter using convolutional neural network“. European Radiology 30, Nr. 11 (17.06.2020): 5923–32. http://dx.doi.org/10.1007/s00330-020-07006-1.
Der volle Inhalt der QuelleHasasneh, Ahmad, Nikolas Kampel, Praveen Sripad, N. Jon Shah und Jürgen Dammers. „Deep Learning Approach for Automatic Classification of Ocular and Cardiac Artifacts in MEG Data“. Journal of Engineering 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/1350692.
Der volle Inhalt der QuelleDeepika, J., T. Senthil, C. Rajan und A. Surendar. „Machine learning algorithms: a background artifact“. International Journal of Engineering & Technology 7, Nr. 1.1 (21.12.2017): 143. http://dx.doi.org/10.14419/ijet.v7i1.1.9214.
Der volle Inhalt der QuelleGraffieti, Gabriele, und Davide Maltoni. „Artifact-Free Single Image Defogging“. Atmosphere 12, Nr. 5 (29.04.2021): 577. http://dx.doi.org/10.3390/atmos12050577.
Der volle Inhalt der QuelleLee, Seung-Bo, Hakseung Kim, Young-Tak Kim, Frederick A. Zeiler, Peter Smielewski, Marek Czosnyka und Dong-Joo Kim. „Artifact removal from neurophysiological signals: impact on intracranial and arterial pressure monitoring in traumatic brain injury“. Journal of Neurosurgery 132, Nr. 6 (Juni 2020): 1952–60. http://dx.doi.org/10.3171/2019.2.jns182260.
Der volle Inhalt der QuelleWu, Chao, Xiaonan Zhao, Mark Welsh, Kellianne Costello, Kajia Cao, Ahmad Abou Tayoun, Marilyn Li und Mahdi Sarmady. „Using Machine Learning to Identify True Somatic Variants from Next-Generation Sequencing“. Clinical Chemistry 66, Nr. 1 (30.12.2019): 239–46. http://dx.doi.org/10.1373/clinchem.2019.308213.
Der volle Inhalt der QuelleWeiss, Dennis M. „Learning to be human with sociable robots“. Paladyn, Journal of Behavioral Robotics 11, Nr. 1 (18.02.2020): 19–30. http://dx.doi.org/10.1515/pjbr-2020-0002.
Der volle Inhalt der QuelleBedi, Pradeep, S. B. Goyal, Dileep Kumar Yadav, Sunil Kumar und Monika Sharma. „Hybrid Learning Model for Metal Artifact Reduction“. Journal of Physics: Conference Series 1714 (Januar 2021): 012021. http://dx.doi.org/10.1088/1742-6596/1714/1/012021.
Der volle Inhalt der QuelleParmaxi, Antigoni, und Panayiotis Zaphiris. „Emerging Technologies for Artifact Construction in Learning“. Computers in Human Behavior 99 (Oktober 2019): 366–67. http://dx.doi.org/10.1016/j.chb.2019.05.034.
Der volle Inhalt der QuelleDissertationen zum Thema "Learning artifact"
Eireflet, Johan, und Buhtoo Helen Petersson. „Det nya verktyget : En undersökning av förskollärares upplevelser med surfplattan“. Thesis, Högskolan i Halmstad, Akademin för lärande, humaniora och samhälle, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-28141.
Der volle Inhalt der QuelleDumas, Kuchling Janine. „1:1 Digital devices and preparatory school teachers’ classroom practices“. Diss., University of Pretoria, 2020. http://hdl.handle.net/2263/80435.
Der volle Inhalt der QuelleDissertation (MEd)--University of Pretoria 2020.
pt2021
Humanities Education
MEd
Unrestricted
Riblett, Matthew J. „Motion-Induced Artifact Mitigation and Image Enhancement Strategies for Four-Dimensional Fan-Beam and Cone-Beam Computed Tomography“. VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5542.
Der volle Inhalt der QuelleGibbs, Béatrice. „Wii lär oss dansa? : Om dansspel, rörelsekvaliteter och lärande i idrott och hälsa“. Licentiate thesis, Gymnastik- och idrottshögskolan, GIH, Forskningsgruppen för pedagogik, idrott och fritidskultur, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:gih:diva-3345.
Der volle Inhalt der QuelleForskningslinjen Utbildning
Thorén, Mia. „"Och väggarna förvandlades till världen runtomkring" : pedagogers röster och praktiker kring att främja elevers fantasi och kreativitet i och genom fritidshemmets inomhusmiljö“. Thesis, Högskolan Kristianstad, Fakulteten för lärarutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-20270.
Der volle Inhalt der QuelleThe emphasis of Swedish leisure-time teachers assignment lies in the unpredictable characteristics of play, explorative and creative ways of working and encouraging child fantasy and creativity. The leisure time centre is also a physical space where a complex mix of expectations of informal learning and care takes place. The physical learning environment of Swedish leisure-time centres, and the teacher’s assignment concerning it, is neither in detail regulated in steering documents nor well documented in academic research but seems to be an upcoming subject of attention. This study, which has been executed as walking interviews with teachers in four Swedish leisure-time centres, aims to – through a sociocultural and multimodal theoretical perspective – illustrate the intention and applied practices concerning the encouraging of child fantasy and creativity in and through physical learning environment. It also aims to explore the use and range of artifacts and how they are presented to children. The results of this study present a unanimous picture of the range of artifacts used and an assignment highly vivid to the teachers but still unspecified as well as marginalized.
Ghazi, Shabo Andira, und Amal Audish Basa Sarok. „Vilka beskrivningar avteknikämnet framkommer hosniondeklassare i grundskolan?“ Thesis, KTH, Lärande, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280878.
Der volle Inhalt der QuelleThe purpose of this study has been to understand how high school students year 9 in six Swedish schools describe the subject of technology and state what they have learned and what they lacked about content in the subject of technology after 9 years in primary school. The study is based on a questionnaire completed using paper and pen. Respondents had to answer questions about what technology is, and what they have learned and possibly missed in technology teaching during primary school. 252 questionnaires were distributed and 250 were answered. DiGirnonimo's (2011) framework has been used to categorize statements regarding the nature of technology that appear in students' questionnaire responses. The results show that technology described as an artifact and technology as a creative process as well as descriptions related to the role of technology in society are the most recurring dimensions in the respondents' answers. However, not many students describe technology related to the history of technology or technology as human activity. The results show that students seem to have learned the most about construction technology and drawing technology. Another content that is emphasized by the students as something they have learned a lot about is programming. Themes such as electrical engineering, ways of thinking to solve problems, etc. (as an engineer), technical systems, environmental issues related to technology also emerge, but with less frequency. The results show that students generally mention technology teaching from different angles. Many students can express several of DiGironimo's dimensions when asked what technology is. However, as some areas, such as the historical dimension, do not really emerge, clarity and more well-planned technical teaching are still required to cover the entire content of the syllabus for the technical subject. A relatively large proportion of the students show uncertainty about what technology content they lacked in their technology teaching. This may of course be because they do not know what to expect from the teaching. What emerges in the students' answers is that they lack programming, technical content, construction, resources, practical work, which also coincides with what they think they have learned. One interpretation is that these areas are the students'description of what the subject of technology includes and that this is what they also considerneeding more of.
Bigenho, Christopher William. „Student reflections as artifacts of self-regulatory behaviors for learning: A tale of two courses“. Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc103291/.
Der volle Inhalt der QuelleWetterlund, Simon. „Samiska politikers lärande : Rätten att få vara exkluderad och fortfarande vara inkluderad“. Thesis, Uppsala universitet, Institutionen för pedagogik, didaktik och utbildningsstudier, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-254563.
Der volle Inhalt der QuelleSteeples, Christine. „Networked learning environments : continuing professional development and the creation and use of multimedia artifacts“. Thesis, Lancaster University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418857.
Der volle Inhalt der QuelleSutter, Berthel. „Instruction at heart. Activity-theoretical studies of learning and development in coronary clinical work“. Doctoral thesis, Ronneby : Blekinge Institute of Technology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-00185.
Der volle Inhalt der QuelleStudier av läkares co-coaching av varandra som ett led i deras samarbete rörande kranskärlsdiagnostiskt arbete. Artefaktanvändning, lärande och versamhetsutveckling.
Bücher zum Thema "Learning artifact"
Dillenbourg, Pierre, Jeffrey Huang und Mauro Cherubini, Hrsg. Interactive Artifacts and Furniture Supporting Collaborative Work and Learning. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77234-9.
Der volle Inhalt der QuelleDillenbourg, Pierre. Interactive Artifacts and Furniture Supporting Collaborative Work and Learning. Boston, MA: Springer Science+Business Media, LLC, 2009.
Den vollen Inhalt der Quelle findenIvarsson, Jonas. Renderings & reasoning: Studying artifacts in human knowing. Göteborg, Sweden: Acta Universitatis Gothoburgensis, 2004.
Den vollen Inhalt der Quelle findenArtifact Case Studies: Interpreting Children's Work and Teachers' Classroom Strategies (Merrill Education Student Enrichment). Prentice Hall, 2003.
Den vollen Inhalt der Quelle findenOrmrod, Jeanne Ellis. Artifact Case Studies: Interpreting Children's Work and Teachers' Classroom Strategies (Merrill Education Student Enrichment). Prentice Hall, 2003.
Den vollen Inhalt der Quelle finden1963-, Nehaniv Chrystopher L., und Dautenhahn Kerstin, Hrsg. Imitation in animals and artifacts. Cambridge, Mass: MIT Press, 2002.
Den vollen Inhalt der Quelle findenNehaniv, Chrystopher L., und Kerstin Dautenhahn. Imitation in Animals and Artifacts. MIT Press, 2002.
Den vollen Inhalt der Quelle findenNehaniv, Chrystopher L., und Kerstin Dautenhahn. Imitation in Animals and Artifacts. MIT Press, 2019.
Den vollen Inhalt der Quelle finden(Editor), Kerstin Dautenhahn, und Chrystopher L. Nehaniv (Editor), Hrsg. Imitation in Animals and Artifacts (Complex Adaptive Systems). The MIT Press, 2002.
Den vollen Inhalt der Quelle findenDillenbourg, Pierre, Jeffrey Huang und Mauro Cherubini. Interactive Artifacts and Furniture Supporting Collaborative Work and Learning. Springer, 2009.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Learning artifact"
Cole, Mike. „Re-covering the Idea of a Tertiary Artifact“. In Cultural-Historical Approaches to Studying Learning and Development, 303–21. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6826-4_20.
Der volle Inhalt der QuelleHadaya, Pierre, Abderrahmane Leshob und Julien Nicolas de Verteuil. „An Artifact for Learning the TOGAF Architecture Development Method“. In Advances in E-Business Engineering for Ubiquitous Computing, 435–49. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34986-8_31.
Der volle Inhalt der QuelleHuang, Yixing, Alexander Preuhs, Günter Lauritsch, Michael Manhart, Xiaolin Huang und Andreas Maier. „Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior“. In Machine Learning for Medical Image Reconstruction, 101–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33843-5_10.
Der volle Inhalt der QuelleKim, Dong Kyu, und Sam Keene. „Fast Automatic Artifact Annotator for EEG Signals Using Deep Learning“. In Biomedical Signal Processing, 195–221. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67494-6_7.
Der volle Inhalt der QuelleCunnington, J. P. W., G. R. Norman, J. M. Blake, W. D. Dauphinee und D. E. Blackmore. „Applying Learning Taxonomies to Test Items: Is a Fact an Artifact?“ In Advances in Medical Education, 139–42. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-4886-3_40.
Der volle Inhalt der QuelleSawaragi, Tetsuo. „Reproductive Process-Oriented Data Mining from Interactions between Human and Complex Artifact System“. In Machine Learning and Data Mining in Pattern Recognition, 180–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48097-8_15.
Der volle Inhalt der QuelleDora, Chinmayee, und Pradyut Kumar Biswal. „An ELM Based Regression Model for ECG Artifact Minimization from Single Channel EEG“. In Intelligent Data Engineering and Automated Learning – IDEAL 2018, 269–76. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03493-1_29.
Der volle Inhalt der QuelleBordiés, Osmel, Andreas Papasalouros und Yannis Dimitriadis. „Estimating the Gap between Informal Descriptions and Formal Models of Artifact Flows in CSCL“. In Open Learning and Teaching in Educational Communities, 554–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11200-8_66.
Der volle Inhalt der QuelleHuang, Yixing, Yanye Lu, Oliver Taubmann, Guenter Lauritsch und Andreas Maier. „Traditional Machine Learning Techniques for Streak Artifact Reduction in Limited Angle Tomography“. In Bildverarbeitung für die Medizin 2018, 222–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56537-7_62.
Der volle Inhalt der QuelleMoyes, Andrew, Kun Zhang, Ming Ji, Huiyu Zhou und Danny Crookes. „Unsupervised Deep Learning for Stain Separation and Artifact Detection in Histopathology Images“. In Communications in Computer and Information Science, 221–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52791-4_18.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Learning artifact"
Vasiliou, Christina. „Collaborative Learning In An Artifact Ecology“. In the 2015 International Conference. New York, New York, USA: ACM Press, 2015. http://dx.doi.org/10.1145/2817721.2820987.
Der volle Inhalt der QuelleNedelcu, Elena, Raluca Portase, Ramona Tolas, Raul Muresan, Mihaela Dinsoreanu und Rodica Potolea. „Artifact detection in EEG using machine learning“. In 2017 13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP). IEEE, 2017. http://dx.doi.org/10.1109/iccp.2017.8116986.
Der volle Inhalt der QuelleNiu, Chuang, Mengzhou Li und Ge Wang. „Multi-window learning for metal artifact reduction“. In Developments in X-Ray Tomography XIII, herausgegeben von Bert Müller und Ge Wang. SPIE, 2021. http://dx.doi.org/10.1117/12.2596239.
Der volle Inhalt der QuelleMolina, Facundo, Pablo Ponzio, Nazareno Aguirre und Marcelo Frias. „EvoSpex: An Evolutionary Algorithm for Learning Postconditions (artifact)“. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, 2021. http://dx.doi.org/10.1109/icse-companion52605.2021.00080.
Der volle Inhalt der QuelleNjomou, Aquilas Tchanjou, Alexandra Johanne Bifona Africa, Bram Adams und Marios Fokaefs. „MSR4ML: Reconstructing Artifact Traceability in Machine Learning Repositories“. In 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2021. http://dx.doi.org/10.1109/saner50967.2021.00061.
Der volle Inhalt der QuellePrakash, Prakhar, und Sandeep Dutta. „Deep learning-based artifact detection for diagnostic CT images“. In Physics of Medical Imaging, herausgegeben von Hilde Bosmans, Guang-Hong Chen und Taly Gilat Schmidt. SPIE, 2019. http://dx.doi.org/10.1117/12.2511766.
Der volle Inhalt der QuelleXu, Shiyu, und Hao Dang. „Deep residual learning enabled metal artifact reduction in CT“. In Physics of Medical Imaging, herausgegeben von Guang-Hong Chen, Joseph Y. Lo und Taly Gilat Schmidt. SPIE, 2018. http://dx.doi.org/10.1117/12.2293945.
Der volle Inhalt der QuelleLee, Sangmin S., Kiwon Lee und Guiyeom Kang. „EEG Artifact Removal by Bayesian Deep Learning & ICA“. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society. IEEE, 2020. http://dx.doi.org/10.1109/embc44109.2020.9175785.
Der volle Inhalt der QuelleHu, Yueyu, Haichuan Ma, Dong Liu und Jiaying Liu. „Compression Artifact Removal with Ensemble Learning of Neural Networks“. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2020. http://dx.doi.org/10.1109/cvprw50498.2020.00074.
Der volle Inhalt der QuelleErkens, Melanie, Oliver Daems und H. Ulrich Hoppe. „Artifact Analysis around Video Creation in Collaborative STEM Learning Scenarios“. In 2014 IEEE 14th International Conference on Advanced Learning Technologies (ICALT). IEEE, 2014. http://dx.doi.org/10.1109/icalt.2014.116.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Learning artifact"
Chang, Chihway, Alex Drlica-Wagner, Brian Nord, Donah, Michelle Wang und Michael H. L. S. Wang. A Machine Learning Approach to the Detection of Ghosting Artifacts in Dark Energy Survey Images. Office of Scientific and Technical Information (OSTI), Dezember 2019. http://dx.doi.org/10.2172/1594126.
Der volle Inhalt der Quelle