Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Lean hydrogen.

Zeitschriftenartikel zum Thema „Lean hydrogen“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Lean hydrogen" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Pan, Shiyi, Jinhua Wang, Bin Liang, Hao Duan, and Zuohua Huang. "Experimental Study on the Effects of Hydrogen Injection Strategy on the Combustion and Emissions of a Hydrogen/Gasoline Dual Fuel SI Engine under Lean Burn Condition." Applied Sciences 12, no. 20 (2022): 10549. http://dx.doi.org/10.3390/app122010549.

Der volle Inhalt der Quelle
Annotation:
Hydrogen addition can improve the performance and extend the lean burn limit of gasoline engines. Different hydrogen injection strategies lead to different types of hydrogen mixture distribution (HMD), which affects the engine performance. Therefore, the present study experimentally investigated the effects of hydrogen injection strategy on the combustion and emissions of a hydrogen/gasoline dual-fuel port-injection engine under lean-burn conditions. Four different hydrogen injection strategies were explored: hydrogen direct injection (HDI), forming a stratified hydrogen mixture distribution (
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

SWAIN, M., P. FILOSO, and M. SWAIN. "Ignition of lean hydrogen–air mixtures." International Journal of Hydrogen Energy 30, no. 13-14 (2005): 1447–55. http://dx.doi.org/10.1016/j.ijhydene.2004.10.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bo-wei, JIAO, YU Nan-jia, and ZHOU Chuang. "Parameter optimization and simulation of lean-burn gas generator." Journal of Physics: Conference Series 2235, no. 1 (2022): 012080. http://dx.doi.org/10.1088/1742-6596/2235/1/012080.

Der volle Inhalt der Quelle
Annotation:
Abstract The pre-cooling engine cools the incoming air through a pre-cooler and then makes it enter the subsequent components to work. This type of engine is one of the most important development directions in the combined power scheme. In order to accurately control the lean-burn gas temperature and oxygen concentration under different incoming flow conditions, and adjust it through the nitrogen-to-hydrogen ratio (GNGH) and oxygen-to-hydrogen ratio (GOGH). The oxygen concentration and temperature were obtained by thermal calculation and the optimal nitrogen-hydrogen ratio and oxygen-hydrogen
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

YAMAMOTO, Kazuhiro, Masayuki MARUYAMA, and Yoshiaki ONUMA. "Effects of Hydrogen Addition on Lean Combustion." Transactions of the Japan Society of Mechanical Engineers Series B 64, no. 622 (1998): 1919–24. http://dx.doi.org/10.1299/kikaib.64.1919.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Schefer, R. "Hydrogen enrichment for improved lean flame stability." International Journal of Hydrogen Energy 28, no. 10 (2003): 1131–41. http://dx.doi.org/10.1016/s0360-3199(02)00199-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Krivosheyev, Pavel, Yuliya Kisel, Аlexander Skilandz, Kirill Sevrouk, Oleg Penyazkov, and Anatoly Tereza. "Ignition delay of lean hydrogen-air mixtures." International Journal of Hydrogen Energy 66 (May 2024): 81–89. http://dx.doi.org/10.1016/j.ijhydene.2024.03.363.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Leyko, Jacek, Kamil Słobiński, Jarosław Jaworski, Grzegorz Mitukiewicz, Wissam Bou Nader, and Damian Batory. "Study on SI Engine Operation Stability at Lean Condition—The Effect of a Small Amount of Hydrogen Addition." Energies 16, no. 18 (2023): 6659. http://dx.doi.org/10.3390/en16186659.

Der volle Inhalt der Quelle
Annotation:
The lean-burn mode is a solution that reduces the fuel consumption of spark-ignition internal combustion engines and keeps the low exhaust emission, but the stability of the lean-burn combustion process, especially at low loads, needs to be addressed. Enhancing gasoline with hybrid hydrogen oxygen (HHO) gas—a mixture of hydrogen and oxygen gases—is proposed to improve combustion of the lean-gasoline mixture. A three-cylinder, spark-ignition, naturally aspirated, MPI engine with HHO gas produced with an alkaline water electrolyzer and introduced as a gasoline enhancement was tested. The amount
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Griebel, P., E. Boschek, and P. Jansohn. "Lean Blowout Limits and NOx Emissions of Turbulent, Lean Premixed, Hydrogen-Enriched Methane/Air Flames at High Pressure." Journal of Engineering for Gas Turbines and Power 129, no. 2 (2006): 404–10. http://dx.doi.org/10.1115/1.2436568.

Der volle Inhalt der Quelle
Annotation:
Flame stability is a crucial issue in low NOx combustion systems operating at extremely lean conditions. Hydrogen enrichment seems to be a promising option to extend lean blowout limits (LBO) of natural gas combustion. This experimental study addresses flame stability enhancement and NOx reduction in turbulent, high-pressure, lean premixed methane/air flames in a generic combustor capable of a wide range of operating conditions. Lean blowout limits and NOx emissions are presented for pressures up to 14bar, bulk velocities in the range of 32–80m∕s, two different preheating temperatures (673K, 7
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Meyers, D. P., and J. T. Kubesh. "The Hybrid Rich-Burn/Lean-Burn Engine." Journal of Engineering for Gas Turbines and Power 119, no. 1 (1997): 243–49. http://dx.doi.org/10.1115/1.2815555.

Der volle Inhalt der Quelle
Annotation:
This paper describes a new low-emissions engine concept called the hybrid rich-burn/lean-burn (HRBLB) engine. In this concept a portion of the cylinders of a multicylinder engine are fueled with a very rich natural gas-air mixture. The remaining cylinders are operated with a lean mixture of natural gas and air and supplemented with the rich combustion exhaust. The goal of this unique concept is the production of extremely low NOx (e.g., 5 ppm when corrected to 15 percent exhaust oxygen content). This is accomplished by operating outside the combustion limits where NOx is produced. In rich comb
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Popelka, Josef. "Design of System Hydrogen Engine Supercharging." Advanced Materials Research 1016 (August 2014): 607–11. http://dx.doi.org/10.4028/www.scientific.net/amr.1016.607.

Der volle Inhalt der Quelle
Annotation:
In this paper I am dealing with a general analysis of problems burning of lean hydrogen mixtures in combustion engines. During burning of very lean mixtures burning procedure is over lasted with characteristic features. They need to be removed or reduced. One of these features is low power of engines operating by lean mixtures, which can be partially removed with the help of supercharging such engines. In the second part of the paper I am dealing with a design of supercharging system for a three-cylinder engine with volume 1,2 dm3.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Leite, Caio Ramalho, Pierre Brequigny, Jacques Borée, and Fabrice Foucher. "Comparative Analysis Of Cycle-To-Cycle Variabilities And Combustion Development In An Optical Spark-Ignition Engine Fueled By Pure Hydrogen And Propane: Insights From Chemiluminescence and PI." Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 21 (July 8, 2024): 1–18. http://dx.doi.org/10.55037/lxlaser.21st.122.

Der volle Inhalt der Quelle
Annotation:
Hydrogen, derived from renewable sources and devoid of carbon emissions, is a pivotal energy carrier for the future. Representing a viable substitute for fossil fuels in internal combustion engines (ICEs), contemporary studies advocate using very-lean and ultra-lean hydrogen-air mixtures, with a fuel-air equivalence ratio below 0.5, as a potent strategy to reduce NOx emissions in hydrogen-fueled ICEs. An experimental setup with an optical spark-ignition engine was devised to investigate the primary factors influencing cycle-to-cycle variations in H2ICEs by optimizing mixture homogeneity and fo
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Filomeno, Giovanni, Tommaso Capurso, Marco Torresi, and Giuseppe Pascazio. "Numerical study of the lean premixed PRECCINSTA burner with hydrogen enrichment." E3S Web of Conferences 312 (2021): 11014. http://dx.doi.org/10.1051/e3sconf/202131211014.

Der volle Inhalt der Quelle
Annotation:
Hydrogen combustion is one of the most promising solution to achieve a global decarbonization in power production and transports. Pure hydrogen combustion is far from becoming a standard but, during the energy transition, hydrogen co-firing can be a feasible and economically attractive shortterm measure. The use of hydrogen blending gives rise to several issues related to flashback, NOx emissions and thermo-acoustic instabilities. To improve the understanding of the effect of hydrogen enrichment, herein a numerical analysis of lean premixed hydrogen enriched flames is performed by means of 3D
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Mahjoub, Mustafa, Aleksandar Milivojevic, Vuk Adzic, Marija Zivkovic, Vasko Fotev, and Miroljub Adzic. "Numerical analysis of lean premixed combustor fueled by propane-hydrogen mixture." Thermal Science 21, no. 6 Part A (2017): 2599–608. http://dx.doi.org/10.2298/tsci160717131m.

Der volle Inhalt der Quelle
Annotation:
A numerical investigation of combustion of propane-hydrogen mixture in a swirl premixed micro gas turbine combustor is presented. The effects of hydrogen addition into propane on temperature distribution in the combustor, reaction rates of propane and hydrogen and NOx emissions for different equivalence ratios and swirl numbers are given. The propane-hydrogen mixture of 90/10% by volume was assumed. The numerical results and measurements of NOx emissions for pure propane are compared. Excellent agreements are found for all equivalence ratios and swirl numbers, except for the highest swirl numb
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Song, Wonsik, Francisco E. Hernández-Pérez, and Hong G. Im. "Diffusive effects of hydrogen on pressurized lean turbulent hydrogen-air premixed flames." Combustion and Flame 246 (December 2022): 112423. http://dx.doi.org/10.1016/j.combustflame.2022.112423.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

WIERZBA, I. "Catalytic oxidation of lean homogeneous mixtures of hydrogen/hydrogen?methane in air." International Journal of Hydrogen Energy 29, no. 12 (2004): 1303–7. http://dx.doi.org/10.1016/j.ijhydene.2003.12.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Fernández-Tarrazo, E., A. L. Sánchez, A. Liñán, and F. A. Williams. "The structure of lean hydrogen-air flame balls." Proceedings of the Combustion Institute 33, no. 1 (2011): 1203–10. http://dx.doi.org/10.1016/j.proci.2010.05.086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Aspden, A. J., M. S. Day, and J. B. Bell. "Turbulence-chemistry interaction in lean premixed hydrogen combustion." Proceedings of the Combustion Institute 35, no. 2 (2015): 1321–29. http://dx.doi.org/10.1016/j.proci.2014.08.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Treviño, C. "Catalytic ignition of very lean mixtures of hydrogen." International Journal of Hydrogen Energy 36, no. 14 (2011): 8610–18. http://dx.doi.org/10.1016/j.ijhydene.2011.03.129.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Gavrikov, Andrey I., Victor V. Golub, Anton Yu Mikushkin, Vyatcheslav A. Petukhov, and Vladislav V. Volodin. "Lean hydrogen-air premixed flame with heat loss." International Journal of Hydrogen Energy 44, no. 36 (2019): 20462–69. http://dx.doi.org/10.1016/j.ijhydene.2019.05.239.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Tereza, A. M., G. L. Agafonov, E. K. Anderzhanov, et al. "Structure of a Lean Laminar Hydrogen–Air Flame." Russian Journal of Physical Chemistry B 17, no. 4 (2023): 974–78. http://dx.doi.org/10.1134/s1990793123040309.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Kahangamage, Udaya, Yi Chen, Chun Wah Leung, and Tung Yan Ngai. "Experimental Study of Lean-burning Limits of Hydrogen-enriched LPG Intended for Domestic Use." Journal of Energy and Power Technology 4, no. 2 (2022): 1. http://dx.doi.org/10.21926/jept.2202016.

Der volle Inhalt der Quelle
Annotation:
The lean-burning limits of hydrogen-enriched Liquefied Petroleum Gas (LPG) have been studied using a Bunsen burner. The lean-burning limits under different conditions are important design considerations in developing gas-fired domestic appliances. In this study, the lean-burning limits of hydrogen-enriched LPG have been obtained across a wide range of Reynolds numbers (600 to 1800) and H2 volumetric fractions (0% to 25%). The results show that the lean-burning limit is increased, on average, by 4.0% to 7.2% for every 5% increment of H2 volumetric fraction under different Reynolds numbers. A nu
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Di Sarli, Valeria. "Stability and Emissions of a Lean Pre-Mixed Combustor with Rich Catalytic/Lean-burn Pilot." International Journal of Chemical Reactor Engineering 12, no. 1 (2014): 77–89. http://dx.doi.org/10.1515/ijcre-2013-0112.

Der volle Inhalt der Quelle
Annotation:
Abstract In this work, a reactor network model was developed to study homogeneous gas-phase methane combustion taking place under typical operating conditions of lean pre-mixed combustors piloted by rich catalytic/lean-burn (RCL) systems. In particular, the thermo-kinetic interaction between the pilot stream (i.e. the stream exiting the RCL stage) and the main feeding stream to the homogeneous reactor was investigated in terms of combustion stability and emissions. The homogeneous combustor was modeled as a perfectly stirred reactor (PSR). The pilot stream was mixed with the main feeding strea
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Bauwens, C. R., J. Chao, and S. B. Dorofeev. "Effect of hydrogen concentration on vented explosion overpressures from lean hydrogen–air deflagrations." International Journal of Hydrogen Energy 37, no. 22 (2012): 17599–605. http://dx.doi.org/10.1016/j.ijhydene.2012.04.053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Chaichan, Miqdam Tariq. "Characterization of Lean Misfire Limits of Mixture Alternative Gaseous Fuels Used for Spark Ignition Engines." Tikrit Journal of Engineering Sciences 19, no. 1 (2012): 50–61. http://dx.doi.org/10.25130/tjes.19.1.06.

Der volle Inhalt der Quelle
Annotation:
Increasing on gaseous fuels as clean, economical and abundant fuels encourages the search for optimum conditions of gas-fueled internal combustion engines. This paper presents the experimental results on the lean operational limits of Recardo E6 engine using gasoline, LPG, NG and hydrogen as fuels. The first appearance of almost motoring cycle was used to define the engine lean limit after the fuel flow was reduced gradually. The effects of compression ratio, engine speed and spark timing on the engine operational limits are presented and discussed in detailed. Increasing compression ratio (CR
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Weber, Sebastian, Mauro Martin, and Werner Theisen. "Development of Lean Alloyed Austenitic Stainless Steels with Reduced Tendency to Hydrogen Environment Embrittlement." Materials Science Forum 706-709 (January 2012): 1041–46. http://dx.doi.org/10.4028/www.scientific.net/msf.706-709.1041.

Der volle Inhalt der Quelle
Annotation:
Hydrogen gas is believed to play a more important role for energy supply in future instationary and mobile applications. In most cases, metallic materials are embrittled when hydrogen atoms are dissolved interstitially into their lattice. Concerning steels, in particular the ductility of ferritic grades is degraded in the presence of hydrogen. In contrast, austenitic steels usually show a lower tendency to hydrogen embrittlement. However, the so-called “metastable” austenitic steels are prone to hydrogen environmental embrittlement (HEE), too. Here, AISI 304 type austenitic steel was tensile t
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Vendra, C. Madhav Rao, and X. Jennifer Wen. "Fluid structure interactions modelling in Vented lean deflagrations." Journal of Loss Prevention in the Process Industries me 61 (June 13, 2019): 183–94. https://doi.org/10.5281/zenodo.3262341.

Der volle Inhalt der Quelle
Annotation:
The standard 20ft ISO containers are studied both experimentally and numerically with model obstacles to ascertain the peak overpressures generated in case of an accidental fast deflagrations. Apart from overpressure its often important to know the maximum deflections of the enclosures to examine the structural integrity. The container walls are not rigid; they not only contribute through acoustic response to the pressure waves but also through structural resonance response to the generated overpressures. Hence to capture these effects its necessary to do the fluid structure interaction (FSI)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Shang, Weiwei, Xiumin Yu, Weibo Shi, et al. "An Experimental Study on Combustion and Cycle-by-Cycle Variations of an N-Butanol Engine with Hydrogen Direct Injection under Lean Burn Conditions." Sensors 22, no. 3 (2022): 1229. http://dx.doi.org/10.3390/s22031229.

Der volle Inhalt der Quelle
Annotation:
This study experimentally investigated the effects of hydrogen direct injection on combustion and the cycle-by-cycle variations in a spark ignition n-butanol engine under lean burn conditions. For this purpose, a spark ignition engine installed with a hydrogen and n-butanol dual fuel injection system was specially developed. Experiments were conducted at four excess air ratios, four hydrogen fractions(φ(𝐻2)) and pure n-butanol. Engine speed and intake manifold absolute pressure (MAP) were kept at 1500 r/min and 43 kPa, respectively. The results indicate that the θ0–10 and θ10–90 decreased grad
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Jalindar Shinde, Balu, and Karunamurthy. "Effect of excess air ratio and ignition timing on performance, emission and combustion characteristics of high speed hydrogen engine." IOP Conference Series: Earth and Environmental Science 1161, no. 1 (2023): 012006. http://dx.doi.org/10.1088/1755-1315/1161/1/012006.

Der volle Inhalt der Quelle
Annotation:
Abstract The main goal of automobile researchers is to develop internal combustion engines that are fuel efficient and emit zero pollutants. It can be inferred from prior research publications that lean burn conditions can significantly reduce emissions while improving engine efficiency. The lean-burn engine combustion temperatures are lower hence harmful emissions like NO are reduced. Gasoline fuels have a narrow equivalence ratio window hence it was necessary to evaluate the other alternative fuels with a wider equivalence ratio for using it in IC engines for better performance and fewer emi
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Lee, Taesong, and Kyu Tae Kim. "Curvature Distribution of Lean-Premixed Mesoscale Multinozzle Hydrogen Flames." Journal of The Korean Society of Combustion 26, no. 1 (2021): 14–21. http://dx.doi.org/10.15231/jksc.2021.26.1.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

YOSHIKAWA, Norihiko, Hiroyasu SAITOH, and Tomoaki YOSHIDA. "Enhancement of Volumetric Ignition in Lean Hydrogen-Air Mixtures." Journal of the Visualization Society of Japan 27, Supplement2 (2007): 177–78. http://dx.doi.org/10.3154/jvs.27.supplement2_177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Bastiaans, Rob, and A. W. Vreman. "Numerical simulation of instabilities in lean premixed hydrogen combustion." International Journal of Numerical Methods for Heat & Fluid Flow 22, no. 1 (2012): 112–28. http://dx.doi.org/10.1108/09615531211188829.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Khamedov, Ruslan, Mohammad Rafi Malik, Francisco E. Hernández-Pérez, and Hong G. Im. "Propagation characteristics of lean turbulent premixed ammonia–hydrogen flames." Proceedings of the Combustion Institute 40, no. 1-4 (2024): 105736. http://dx.doi.org/10.1016/j.proci.2024.105736.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Sanchez Bahoque, Gabriela, and Jeroen van Oijen. "Flamelet generated manifolds for lean premixed turbulent hydrogen flames." Proceedings of the Combustion Institute 40, no. 1-4 (2024): 105614. http://dx.doi.org/10.1016/j.proci.2024.105614.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Iacoviello, Francesco, Vittorio Di Cocco, Costanzo Bellini, and Luca Sorrentino. "Hydrogen embrittlement in a 2101 lean Duplex Stainless Steel." Procedia Structural Integrity 18 (2019): 391–98. http://dx.doi.org/10.1016/j.prostr.2019.08.180.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Shudo, T. "NOx emission characteristics in rich–lean combustion of hydrogen." JSAE Review 23, no. 1 (2002): 9–14. http://dx.doi.org/10.1016/s0389-4304(01)00163-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Ren, J. Y., W. Qin, F. N. Egolfopoulos, and T. T. Tsotsis. "Strain-rate effects on hydrogen-enhanced lean premixed combustion." Combustion and Flame 124, no. 4 (2001): 717–20. http://dx.doi.org/10.1016/s0010-2180(00)00205-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Berger, Lukas, Konstantin Kleinheinz, Antonio Attili, and Heinz Pitsch. "Characteristic patterns of thermodiffusively unstable premixed lean hydrogen flames." Proceedings of the Combustion Institute 37, no. 2 (2019): 1879–86. http://dx.doi.org/10.1016/j.proci.2018.06.072.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Seshadri, K., N. Peters, and F. A. Williams. "Asymptotic analyses of stoichiometric and lean hydrogen-air flames." Combustion and Flame 96, no. 4 (1994): 407–27. http://dx.doi.org/10.1016/0010-2180(94)90108-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

KITAGAWA, T., H. KIDO, N. NAKAMURA, and M. AISHIMA. "Flame inertia into lean region in stratified hydrogen mixture." International Journal of Hydrogen Energy 30, no. 13-14 (2005): 1457–64. http://dx.doi.org/10.1016/j.ijhydene.2004.11.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Shahamiri, S. A., and I. Wierzba. "Simulation of catalytic oxidation of lean hydrogen–methane mixtures." International Journal of Hydrogen Energy 34, no. 14 (2009): 5785–94. http://dx.doi.org/10.1016/j.ijhydene.2009.04.077.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Fernández-Galisteo, D., A. L. Sánchez, A. Liñán, and F. A. Williams. "One-step reduced kinetics for lean hydrogen–air deflagration." Combustion and Flame 156, no. 5 (2009): 985–96. http://dx.doi.org/10.1016/j.combustflame.2008.10.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Terezaa, A. M., G. L. Agafonova, E. K. Anderzhanov, et al. "Effect of Impurities on Lean Laminar Hydrogen–air Flames." Химическая физика 42, no. 12 (2023): 48–53. http://dx.doi.org/10.31857/s0207401x23120130.

Der volle Inhalt der Quelle
Annotation:
Simulations of the effect of addition of H, O, OH, HO2, and H2O2 on the structure and propagationof laminar flames in lean (12 and 15%) hydrogen-air flames are performed at pressures of 1 and 6 bar. Itis found that impurities in concentrations of no more than 0.1% do not have any significant effect on laminarburning velocity. When initial temperature is increased to 400 K, the effect of impurities becomes evenweaker. Among the impurities under study, only the addition of OH reduces the laminar flame velocity. Theweak effect of the impurities is attributed to fast formation of intermediate prod
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Tereza, A. M., G. L. Agafonov, E. K. Anderzhanov, et al. "Effect of Impurities on Lean Laminar Hydrogen–Air Flames." Russian Journal of Physical Chemistry B 17, no. 6 (2023): 1294–99. http://dx.doi.org/10.1134/s1990793123060246.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Beita, Jadeed, Midhat Talibi, Suresh Sadasivuni, and Ramanarayanan Balachandran. "Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review." Hydrogen 2, no. 1 (2021): 33–57. http://dx.doi.org/10.3390/hydrogen2010003.

Der volle Inhalt der Quelle
Annotation:
Hydrogen is receiving increasing attention as a versatile energy vector to help accelerate the transition to a decarbonised energy future. Gas turbines will continue to play a critical role in providing grid stability and resilience in future low-carbon power systems; however, it is recognised that this role is contingent upon achieving increased thermal efficiencies and the ability to operate on carbon-neutral fuels such as hydrogen. An important consideration in the development of gas turbine combustors capable of operating with pure hydrogen or hydrogen-enriched natural gas are the signific
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Beita, Jadeed, Midhat Talibi, Suresh Sadasivuni, and Ramanarayanan Balachandran. "Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review." Hydrogen 2, no. 1 (2021): 33–57. http://dx.doi.org/10.3390/hydrogen2010003.

Der volle Inhalt der Quelle
Annotation:
Hydrogen is receiving increasing attention as a versatile energy vector to help accelerate the transition to a decarbonised energy future. Gas turbines will continue to play a critical role in providing grid stability and resilience in future low-carbon power systems; however, it is recognised that this role is contingent upon achieving increased thermal efficiencies and the ability to operate on carbon-neutral fuels such as hydrogen. An important consideration in the development of gas turbine combustors capable of operating with pure hydrogen or hydrogen-enriched natural gas are the signific
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

CEN, P. L., and R. T. YANG. "ZEOLITE PSA CYCLES FOR PRODUCING A HIGH-PURITY HYDROGEN FROM A HYDROGEN-LEAN MIXTURE." Chemical Engineering Communications 78, no. 1 (1989): 139–51. http://dx.doi.org/10.1080/00986448908940191.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Yu, Xiumin, Yaodong Du, Ping Sun, Lin Liu, Haiming Wu, and Xiongyinan Zuo. "Effects of hydrogen direct injection strategy on characteristics of lean-burn hydrogen–gasoline engines." Fuel 208 (November 2017): 602–11. http://dx.doi.org/10.1016/j.fuel.2017.07.059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Kapoor, A., and R. T. Yang. "Separation of Hydrogen-Lean Mixtures for a High-Purity Hydrogen by Vacuum Swing Adsorption." Separation Science and Technology 23, no. 1-3 (1988): 153–78. http://dx.doi.org/10.1080/01496398808057640.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Shi, Wei Bo, Xiu Min Yu, and Ping Sun. "Performance and Emissions of a Hydrogen-Gasoline SI Engine." Applied Mechanics and Materials 713-715 (January 2015): 243–46. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.243.

Der volle Inhalt der Quelle
Annotation:
When hydrogen is added to a gasoline fueled spark ignition engine the lean limit of the engine can be extended. Lean burn engines are inherently more efficient and have the potential for significantly lower NOx emissions. Thus, the purpose of this paper is to investigate the effect of hydrogen addition to gasoline-air mixture on the performance and exhaust emission characteristics of a spark ignition engine. Six excess air ratios are used ranging from 0.8 to 1.5. The amount of hydrogen added is 18.5% and 30% by energy fraction. The test engine is operated at 1500 rpm. From the experimental obs
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Galloni, Enzo, Davide Lanni, Gustavo Fontana, Gabriele D’Antuono, and Simone Stabile. "Performance Estimation of a Downsized SI Engine Running with Hydrogen." Energies 15, no. 13 (2022): 4744. http://dx.doi.org/10.3390/en15134744.

Der volle Inhalt der Quelle
Annotation:
Hydrogen is a carbon-free fuel that can be produced in many ways starting from different sources. Its use as a fuel in internal combustion engines could be a method of significantly reducing their environmental impact. In spark-ignition (SI) engines, lean hydrogen–air mixtures can be burnt. When a gaseous fuel like hydrogen is port-injected in an SI engine, working with lean mixtures, supercharging becomes very useful in order not to excessively penalize the engine performance. In this work, the performance of a turbocharged PFI spark-ignition engine fueled by hydrogen has been investigated by
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!