Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Leaf and Fruit Diseases“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Leaf and Fruit Diseases" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Leaf and Fruit Diseases"
Rehman, Samra, Muhammad Attique Khan, Majed Alhaisoni, Ammar Armghan, Fayadh Alenezi, Abdullah Alqahtani, Khean Vesal und Yunyoung Nam. „Fruit Leaf Diseases Classification: A Hierarchical Deep Learning Framework“. Computers, Materials & Continua 75, Nr. 1 (2023): 1179–94. http://dx.doi.org/10.32604/cmc.2023.035324.
Der volle Inhalt der QuelleDeepali Joshi, Et al. „Automatic Classification of Mango Leaf Disease based on Machine Learning and Deep Learning Techniques“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 10 (02.11.2023): 1398–405. http://dx.doi.org/10.17762/ijritcc.v11i10.8683.
Der volle Inhalt der QuelleHarteveld, D. O. C., O. A. Akinsanmi, K. Chandra und A. Drenth. „Timing of Infection and Development of Alternaria Diseases in the Canopy of Apple Trees“. Plant Disease 98, Nr. 3 (März 2014): 401–8. http://dx.doi.org/10.1094/pdis-06-13-0676-re.
Der volle Inhalt der QuelleTruong, Hong H., Toyozo Sato, Seiju Ishikawa, Ayaka Minoshima, Takeaki Nishimura und Yuuri Hirooka. „Three Colletotrichum Species Responsible for Anthracnose on Synsepalum dulcificum (Miracle Fruit)“. International Journal of Phytopathology 7, Nr. 3 (27.12.2018): 89–101. http://dx.doi.org/10.33687/phytopath.007.03.2658.
Der volle Inhalt der QuelleJha, Sanjay Kumar, und Sita Lamichhane. „Fungal Diseases of Tomato in Kathmandu Valley“. Journal of Nepal Biotechnology Association 4, Nr. 1 (22.03.2023): 72–74. http://dx.doi.org/10.3126/jnba.v4i1.53449.
Der volle Inhalt der QuelleB.R, SINGH, und TRIPATHI D.P. „LOSS DUE TO LEAF CURL AND SPOTTED WILT DISEASES OF TOMATO“. Madras Agricultural Journal 78, January April (1991): 34–36. http://dx.doi.org/10.29321/maj.10.a01821.
Der volle Inhalt der QuelleMudholakar, Sunita, Kavitha G, Kanaya Kumari K T und Shubha G V. „Automatic Detection of Citrus Fruit and Leaves Diseases Using Deep Neural Network“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 7 (31.07.2022): 4043–51. http://dx.doi.org/10.22214/ijraset.2022.45868.
Der volle Inhalt der QuelleT. R., Prashith Kekuda, Raghavendra H. L., Shilpa M., Pushpavathi D., Tejaswini Petkar und Ayesha Siddiqha. „ANTIMICROBIAL, ANTIRADICAL AND INSECTICIDAL ACTIVITY OF GARDENIA GUMMIFERA L. F. (RUBIACEAE)“. International Journal of Pharmacy and Pharmaceutical Sciences 9, Nr. 10 (02.10.2017): 265. http://dx.doi.org/10.22159/ijpps.2017v9i10.20252.
Der volle Inhalt der QuelleKumakech, Alfred, Allan Tekkara Obonyom, Alexandrina Acipa und Laban Frank Turyagyenda. „Reaction of Selected Citrus Cultivars to Pseudocercospora Leaf and Fruit Spot Disease Under Natural Infection in Northern Uganda“. Journal of Agricultural Science 16, Nr. 4 (15.03.2024): 8. http://dx.doi.org/10.5539/jas.v16n4p8.
Der volle Inhalt der QuelleRaheeba Tun Nisa, Altaf Ahmad Wani, und Rameesa Rashid. „Chemical Management of Alternaria leaf and fruit spot of apple“. International Journal of Current Microbiology and Applied Sciences 10, Nr. 12 (10.12.2021): 521–26. http://dx.doi.org/10.20546/ijcmas.2021.1012.057.
Der volle Inhalt der QuelleDissertationen zum Thema "Leaf and Fruit Diseases"
Welker, Robert M. „White apple leafhopper affects apple fruit quality and leaf gas exchange“. Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-06112009-063712/.
Der volle Inhalt der QuellePretorius, Mathys Cornelius. „Epidemiology and control of Pseudocercospora angolensis fruit and leaf spot disease on citrus in Zimbabwe“. Thesis, Stellenbosch : Stellenbosch University, 2005. http://hdl.handle.net/10019.1/20938.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Fruit and Leaf Spot Disease (FLSD) of citrus, caused by Phaeoramularia angolensis, is found only in 18 countries in Africa, the Comores Islands in the Indian Ocean and Yemen in the Arabian peninsula. The major citrus export countries in Africa are Morocco, South Africa, Swaziland, and Zimbabwe. Zimbabwe is the only country affected by FLSD. FLSD is a disease of major phytosanitary and economic importance and its devastating effect on citrus is highlighted by the fact that the damage is cosmetic, which renders the fruit unmarketable. Total crop losses are not uncommon in Kenya. The aims of the present study, therefore, was was to determine the occurrence of P. angolensis in Zimbabwe and neighbouring Mozambique, to compare these isolates with the Cercospora Fresen. isolates from Swaziland and South Africa, to determine the epidemiology of the pathogen and to implement an effective control strategy to prevent the spread of FLSD. Leaf samples with citrus canker-like lesions collected in the early 1990’s in Zimbabwe were found to be infected by the fungus, Phaeoramularia angolensis. Surveys were undertaken to determine the spread and intensity of FLSD in Zimbabwe and Mozambique. In Zimbabwe, P. angolensis was limited to an area above the 19° south latitude, predominantly the moist areas and not the low-lying drier parts of the country. In Mozambique, no P. angolensis symptoms were found. Observations during the survey indicated that no proper management systems were implemented by Zimbabwean growers. A cercosporoid fungus causing a new Fruit and Leaf Spot Disease on Citrus in South Africa was identified. From morphological and rDNA sequence data (ITS 1, 5.8S and ITS 2), it was concluded that the new disease was caused by Cercospora penzigii, belonging to the Cercospora apii species complex. The genera Pseudophaeoramularia and Phaeoramularia are regarded as synonyms of Pseudocercospora, and subsequently a new combination was proposed in Pseudocercospora as P. angolensis. Cercospora gigantea was shown to not represent a species of Cercospora, while Mycosphaerella citri was found to be morphologically variable, suggesting that it could represent more than one taxon. A control strategy for the control of FLSD was evaluated in the study. The data showed that P. angolensis in Zimbabwe can be managed successfully by the removal of all old and neglected orchards, and on timely fungicide applications. Trifloxystrobin + mancozeb + mineral spray oil (20 g + 200 g + 500 ml/100 l water) applied in November, January and March was the most effective treatment. Three applications of benomyl + mancozeb + mineral spray oil (25 g + 200 g + 500 ml/100 l water) applied during the same period, was the second most effective treatment, and two applications (November and January) of trifloxystrobin + mineral spray oil (20g + 500 ml/100 l water) and difenoconazole (40 g) per 100 l/water applied twice in November and January, the third most effective treatment. The spore trap and weather data showed that P. angolensis needs high moisture and temperatures in excess of 25°C for disease development. It is concluded that P. angolensis in Zimbabwe can be managed successfully by implementing a holistic approach, which should be supported by the authorities, organised agriculture and all technical personnel involved in citrus production.
AFRIKAANSE OPSOMMING: Blaar- en vrugvleksiekte (BVVS) op sitrus, veroorsaak deur Phaeoramularia angolensis, kom in 18 lande in Afrika voor asook die Comores Eilande in die Indiese Oseaan en Yemen op die Arabiese skiereiland. Marokko, Suid Afrika, Swaziland en Zimbabwe is die belangrikste uitvoerders van sitrus in Afrika. Van dié lande het slegs Zimbabwe blaar en vrugvleksiekte op sitrus. Hierdie siekte is van fitosanitêre en ekonomiese waarde en die nadelige effek van die siekte, wat slegs kosmetiese van aard is, is venietigend aangesien vrugte onbemarkbaar is. Totale opbrengsverliese is nie ongewoon in lande soos Kenya nie. Die doelwitte van die studie was dus om die voorkoms van P. angolensis in Zimbabwe te bepaal, om die Cercospora Fresen. isolate vanaf Swaziland en Suid-Afrika met mekaar te vergelyk, om die epidemiologie van die siekte vas te stel en om ‘n effektiewe beheermaatreël teen die siekte te ondersoek. Blaarmonsters met kankeragtige letsels wat in die vroeë 1990’s in Zimbabwe gevind is, het getoon dat die blare geinfekteer is met die swam, Phaeoramularia angolensis. Ondersoeke is geloots om die verspreiding en intensiteit van BVVS in Zimbabwe en Mosambiek te bepaal. In Zimbabwe was gevind dat P. angolensis beperk was tot gebiede bo die 19° Suid breedtegraad, wat die hoër vogtiger gebiede insluit eerder as die droeër, laagliggende gebiede. Geen P. angolensis simptome kon in Mosambiek gevind word nie. Tydens die opnames was dit duidelik dat geen geskikte beheerstrategieë toegepas word deur Zimbabwe se produsente nie. ‘n Nuwe cercosporoid swam, wat blaar en vrugvleksiekte op sitrus is in Suid Afrika veroorsaak is geidentifiseer. Morfologiese en rDNA volgorde (ITS 1, 5.8S en ITS 2) data het getoon dat die siekte veroorsaak word deur Cercospora penzigii wat tot die Cercospora apii spesie kompleks behoort. Die genus Pseudophaeoramularia kan as sinoniem van Pseudocercospora beskou word en ‘n nuwe kombinasie word voorgestel in Pseudocercospora as P. angolensis. Cercospora gigantea het getoon dat dit nie ‘n spesie van Cercospora kon verteenwoordig nie terwyl Mycosphaerella citri varieërend voorkom en meer as een takson kan verteenwoordig. ‘n Beheerstrategie vir die beheer van BVVS is ondersoek. Die data wys dat P. angolensis in Zimbabwe doeltreffend beheer kan word deur die uitroeiing van ou en verwaarloosde bome, en deur goed beplande fungisied bespuiting. Trifloxystrobin + mancozeb + minerale spuitolie (20 g + 200 g + 500 ml/100 l water), wat in November, Januarie en Maart toegedien is, was die mees effektiefste behandeling. Drie bespuitings van benomyl + mancozeb + minerale spuitolie (25 g + 200 g + 500 ml/100 l water) wat oor dieselfde tydperk toegedien is, was die naas beste behandeling. Trifloxystrobin (20 g) + minerale spuitolie (500 ml) per 100 l/water en difenoconazole (40 g) per 100 l/water, beide as twee bespuitings toegedien in November en Januarie, het die derde beste resultaat opgelewer. Die spoorlokval en klimatologiese data het getoon dat P. angolensis vogtige toestande en temperature hoër as 25°C benodig vir siekteontwikkeling. Die afleiding uit die studie is dat P. angolensis suksesvol beheer kan word indien ‘n holistiese benadering gevolg word en alle rolspelers naamlik die owerheid, georganiseerde landbou en tegniese personeel die proses ondersteun.
Abdurabi, Abdurabi Seif. „Studies of phaeoramularia fruit and leaf spot disease of citrus in Kenya“. Thesis, University of Reading, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259502.
Der volle Inhalt der QuellePoulsen, Kristian Wermuth. „Effect of pre-bloom leaf defoliation on cluster morphology and disease pressure“. Master's thesis, ISA-UL, 2015. http://hdl.handle.net/10400.5/12214.
Der volle Inhalt der QuelleDefoliation of grapevines have been shown to impact fruit set and fruit development, although the extent to and timing of which defoliation impacts fruit set and development is still being investigated. This is useful for the purpose of managing crop load and can be a useful tool for disease management. Currently, the understanding is that removal of leaves from the fruiting zone alters the source-sink balance, forcing the grapevine to down-prioritize flowering resulting in reduced fruit set, smaller clusters and less rot (Incidence x Severity). The purpose of this project is to investigate how pre-bloom removal of the six basal leaves on Riesling (clone 49) grapevines alters fruit set, cluster morphology and berry composition. The experiment was conducted in 2014 at Michigan State University’s Southwest Michigan research and Extension Center in Benton Harbor, MI (lat. 42005’10.55” N, long. 86021’03.68”W). Our experiments show that there is a significant impact on fruit set as a consequence of defoliation, where defoliated vines showed a lower percentage of fruit set compared to control (43% vs. 63.4%) and the lower fruit set percentage also yielded less rot within the clusters (21.3% vs. 31.5%). Differences were noted in the rachis development (rachis were heavier and thicker with longer lateral branches in the control), but no significant changes were observed in berry composition and the proportions of successfully to unsuccessfully seeded berries as a result of the treatment
Call, Robert E., und Michael E. Matheron. „Effective Management Tools for Septoria Leaf Spot of Pistachio in Arizona“. College of Agriculture, University of Arizona (Tucson, AZ), 1998. http://hdl.handle.net/10150/220530.
Der volle Inhalt der QuelleCall, Robert E., und Michael E. Matheron. „Fungicidal Performance in Managing Septoria Leaf Spot of Pistachio in Arizona“. College of Agriculture, University of Arizona (Tucson, AZ), 2000. http://hdl.handle.net/10150/223845.
Der volle Inhalt der QuelleMatheron, Michael E., Michael W. Kilby und Robert Call. „Effect of Foliar Application of Benomyl on Severity of Septoria Leaf Spot on Pistachio in Southeastern Arizona“. College of Agriculture, University of Arizona (Tucson, AZ), 1998. http://hdl.handle.net/10150/220574.
Der volle Inhalt der QuelleNdo, Eunice. „Évaluation des facteurs de risque épidémiologique de la phaeoramulariose des agrumes dans les zones humides du Cameroun“. Thesis, Montpellier, SupAgro, 2011. http://www.theses.fr/2011NSAM0034/document.
Der volle Inhalt der QuellePhaeoramularia leaf and fruit spot disease of citrus (PLFSD) caused by Pseudocercospora angolensis attacks citrus in tropical Africa. It also constitutes a threat for the other producer countries located in tropical zone. Chemical treatment is the only method used for effective control of this disease. However, in addition to causing ecological problems, this method lies beyond the reach local smallholders. The development of ecologically friendly strategies to ensure effective protection of citrus is thus necessary. To this end, knowledge of PLFSD risk factors is pre-required. The purpose of this study was to specify, by means of a survey and experiments carried, the effects of certain biotic and abiotic factors on the development of the disease. The survey carried out in 39 production sites of Cameroon, targetted a collection of environmental and biological tree characteristics. Experiments on 8 sites enabled a confirmation and evaluation of suspected factors. A stepwise logistic regression analysis of survey data made it possible to target altitude, soil type, citrus species and vegetation type as main factors influencing disease development. Relations between these factors and disease incidence are illustrated in segmentation trees. Experiments confirmed the great sensitivity of grape fruit and orange trees, while tangerine and Tahiti lime trees were less sensitive. Disease incidence increased with a rise in altitude and a reduction in temperature and rainfall. Soil texture proved to be more determinant in disease development than its chemical composition. Experimentation showed that trees planted under shade are less affected than those located in sunshine. A spatial structure analysis of the disease made it possible to highlight an aggregate structure indicating small scale disease dispersion. An analysis of the spatial structure of an agro forestry farm showed an aggregate structure of the sub populations of constituent tree families. This structure suggested that the dispersion of PLFSD within such a farm would be limited between the various citrus aggregates. PLS regression analysis suggested that several of these parameters play a determinant role in contributing to the development of disease on grape fruit, orange and Satsuma mandarin trees. The development of integrated agro forest systems which enable a decrease of the pressure of pest and diseases is envisaged
Lira, Bruno Silvestre. „Manipulation of leaf senescence and chlorophyll degradation aiming fruit improvement“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/41/41132/tde-28102017-114118/.
Der volle Inhalt der QuelleAs folhas, para a maioria das espécies vegetais, são o principal órgão responsável pela fixação de carbono. Durante o desenvolvimento foliar, o potencial fotossintético aumenta até a folha atingir a sua maturidade. Consequentemente, no momento que o programa de senescência se inicia, a folha apresenta a maior taxa de fotossíntese, a qual passa então a declinar conforme o cloroplasto se desorganiza e a maquinaria fotossintética é degradada. Apesar da redução na fixação de carbono, o catabolismo de macromoléculas possibilita a remobilização de nutrientes para os órgãos dreno em desenvolvimento. Neste contexto, atrasar a senescência destaca-se como uma promissora estratégia para aumento da produtividade, uma vez que estende o período de máxima fixação de carbono das folhas. Outra estratégia que tem recebido atenção por, potencialmente, regular a capacidade fotossintética e afetar a qualidade nutricional dos órgãos coletáveis é a manipulação da degradação da clorofila. Durante o catabolismo deste pigmento, o fitol liberado é reciclado podendo ser armazenado (i.e. na forma de ésteres de fitil com ácidos graxos), ser utilizado na síntese de novas moléculas de clorofila ou ser incorporado na rota biossintética de tocoferóis. Estes últimos compostos, por seu potencial antioxidante, possuem alto valor nutracêutico. No entanto, a maior parte dos estudos sobre senescência e degradação de clorofila foi realizada na planta modelo Arabidopsis thaliana ou em gramíneas, tornando escassas as informações relativas a plantas com frutos carnosos de interesse para a dieta humana. Nesse âmbito, o tomateiro, Solanum lycopersicum, é um excelente modelo de estudo não apenas pela disponibilidade de recursos genético e genômicos, mas também pela importância agronômica e nutricional desta espécie. Assim, este trabalho pretende expandir o conhecimento acerca dos efeitos da manipulação da degradação de clorofila e da senescência sobre o metabolismo e produtividade do tomateiro, bem como sobre a qualidade nutricional dos frutos. De modo a se avaliar as consequências de alterações na degradação de clorofila, iniciou-se por identificar e caracterizar em tomateiro as enzimas clorofilase e feofitinase, as quais catalisam a defitilação da molécula de clorofila. Uma vasta análise filogenética, evolutiva e transcricional permitiu a identificação de dois grupos de clorofilases, um dos quais estaria envolvido na plasticidade de respostas a estímulos e o outro na homeostase dos níveis de clorofila. Já para feofitinase, somente um grupo foi identificado, o qual está relacionado a processos fisiologicamente programados que levam à degradação de clorofila (i.e. senescência foliar e amadurecimento de frutos). Dado o panorama obtido, a feofitinase foi escolhida para ser constitutivamente silenciada de modo a se avaliar as consequências para o metabolismo de folhas e frutos. Como consequência do silenciamento, as linhagens transgênicas mostraram-se incapazes de degradar clorofila durante a senescência, mas, embora com um atraso nas etapas iniciais, a degradação ao longo do amadurecimento de frutos não foi comprometida. Diversos parâmetros fotossintéticos e bioquímicos foram indicativos de fotoinibição, possivelmente em virtude de uma deficiência na reciclagem da clorofila em folhas. Isto acarretou em um aumento na exportação de açúcares para frutos, incrementando a concentração de açúcares solúveis nos frutos maduros, que, em contrapartida, resultou na queda nos teores de carotenoides. A queda nestes compostos antioxidantes foi, ao menos parcialmente, compensada por um aumento nos níveis de tocoferóis. Os resultados indicaram que a feofitinase possui um papel além da degradação de clorofila associada à senescência, e que sua manipulação leva ao desenvolvimento de frutos com maior teor de açúcares solúveis e de tocoferóis ao custo da redução no de carotenoides. Desta forma, estas evidências suportam a manipulação da clorofila como estratégia para o melhoramento de frutos carnosos. Para investigar o efeito da senescência sobre a produtividade e qualidade de frutos foi escolhido o fator de transcrição ORESARA1, o qual está amplamente caracterizado em A. thaliana e é considerado um regulador chave no desencadeamento deste processo. A partir de uma extensa análise filogenética e da caracterização de sua regulação, um putativo ortólogo foi selecionado como alvo para silenciamento. Como consequência desta manipulação, folhas apresentaram os níveis de clorofila incrementados. Além disto, taxas fotossintéticas maiores que as do genótipo controle foram mantidas por maior tempo indicando que a iniciação da senescência foi retardada. Assim, estas plantas produziram um maior número de frutos, consequentemente, aumentando o índice de colheita dessas linhagens. Os frutos maduros apresentaram maiores teores de açúcares solúveis e de tocoferóis. Os resultados demostraram que o retardo do início da senescência é uma estratégia efetiva para aumento da produtividade de tomateiro. Coletivamente, os resultados obtidos aprofundam o conhecimento acerta dos impactos da degradação de clorofila e senescência sobre o metabolismo de plantas com frutos carnoso, além de prover estratégias para se incrementar a produtividade e a qualidade nutricional de frutos
Campbell, Richard J. „Canopy light environment influences apple leaf physiology and fruit quality“. Diss., Virginia Tech, 1991. http://hdl.handle.net/10919/39857.
Der volle Inhalt der QuellePh. D.
Bücher zum Thema "Leaf and Fruit Diseases"
Stebbins, Robert L. Using leaf analysis to diagnose nutrient disorders in tree fruits and small fruits. Corvallis, Or: Oregon State University Extension Service, 1988.
Den vollen Inhalt der Quelle findenHamilton, K. G. A. Cicadelles des arbres ornementaux et fruitiers du Canada. Ottawa, Ont: Agriculture Canada, 1985.
Den vollen Inhalt der Quelle findenKoch, Maryjo. Seed leaf flower fruit. New York: Smithmark Publishers, 1998.
Den vollen Inhalt der Quelle findenSeed leaf flower fruit. San Francisco: Collins Publishers San Francisco, 1995.
Den vollen Inhalt der Quelle findenOntario. Ministry of Agriculture and Food. Leaf Analyses For Fruit Crops. S.l: s.n, 1988.
Den vollen Inhalt der Quelle findenOntario. Ministry of Agriculture and Food. Leaf analyses for fruit crop nutrition. S.l: s.n, 1990.
Den vollen Inhalt der Quelle findenInternational, Symposium on Virus and Virus-Like Diseases of Temperate Fruit Crops (17th 1997 Bethesda Md ). Fruit tree diseases. Leuven, Belgium: International Society of Horticultural Science, 1998.
Den vollen Inhalt der Quelle findenM, Ogawa J., Hrsg. Stone fruit diseases. St. Paul, MN: American Phytopathological Association, 1995.
Den vollen Inhalt der Quelle findenMisra, A. K. Diseases of fruit crops. New Delhi: Indian Phytopathological Society, 2012.
Den vollen Inhalt der Quelle findenMukerji, K. G., Hrsg. Fruit and Vegetable Diseases. Dordrecht: Kluwer Academic Publishers, 2004. http://dx.doi.org/10.1007/0-306-48575-3.
Der volle Inhalt der QuelleBuchteile zum Thema "Leaf and Fruit Diseases"
Nalini, C., N. Kayalvizhi, V. Keerthana und R. Balaji. „Detection and Classification of Fruit Tree Leaf Disease Using Deep Learning“. In Proceedings of Third Doctoral Symposium on Computational Intelligence, 347–56. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3148-2_30.
Der volle Inhalt der QuelleNandi, Rabindra Nath, Aminul Haque Palash, Nazmul Siddique und Mohammed Golam Zilani. „Device-Friendly Guava Fruit and Leaf Disease Detection Using Deep Learning“. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 49–59. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34619-4_5.
Der volle Inhalt der QuelleNaresh Kumar, S., Sankararao Majji, Tulasi Radhika Patnala, C. B. Jagadeesh, K. Ezhilarasan und S. John Pimo. „Fruit and Leaf Disease Detection Based on Image Processing and Machine Learning Algorithms“. In Expert Clouds and Applications, 377–84. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2500-9_27.
Der volle Inhalt der QuelleAnandamurugan, S., B. Deva Dharshini, J. Ayesha Howla und T. Ranjith. „Deep Neural Network Model for Automatic Detection of Citrus Fruit and Leaf Disease“. In Innovations in Bio-Inspired Computing and Applications, 320–31. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96299-9_32.
Der volle Inhalt der QuelleMateke, Stanley M. „The Effect of Shade on Initial Growth, Development and Occurrences of Leaf Diseases on Wild Indigenous Fruit Trees“. In Combating Desertification with Plants, 233–40. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1327-8_21.
Der volle Inhalt der QuelleVishunavat, Karuna, Kuppusami Prabakar und Theerthagiri Anand. „Seed Health: Testing and Management“. In Seed Science and Technology, 335–64. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5888-5_14.
Der volle Inhalt der QuelleSharma, Saurabh, Gajanand Sharma, Ekta Menghani und Anupama Sharma. „A Comprehensive Review on Automatic Detection and Early Prediction of Tomato Diseases and Pests Control Based on Leaf/Fruit Images“. In Lecture Notes in Networks and Systems, 276–96. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22018-0_26.
Der volle Inhalt der QuelleMorgan, Lynette. „Hydroponic production of selected crops.“ In Hydroponics and protected cultivation: a practical guide, 196–228. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0011a.
Der volle Inhalt der QuelleMorgan, Lynette. „Hydroponic production of selected crops.“ In Hydroponics and protected cultivation: a practical guide, 196–228. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0196.
Der volle Inhalt der QuelleShaker, Khubab, und Yasir Nawab. „Fruit, Seed and Leaf Fibers“. In Lignocellulosic Fibers, 21–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97413-8_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Leaf and Fruit Diseases"
Mohinani, Hanisha, Vinita Chugh, Shivanghee Kaw, Om Yerawar und Indu Dokare. „Vegetable and Fruit Leaf Diseases Detection using ResNet“. In 2022 Interdisciplinary Research in Technology and Management (IRTM). IEEE, 2022. http://dx.doi.org/10.1109/irtm54583.2022.9791744.
Der volle Inhalt der QuelleSaranya, N., L. Pavithra, N. Kanthimathi, B. Ragavi und P. Sandhiyadevi. „Detection of Banana Leaf and Fruit Diseases Using Neural Networks“. In 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). IEEE, 2020. http://dx.doi.org/10.1109/icirca48905.2020.9183006.
Der volle Inhalt der QuelleJ, Catherine Bimla, Sindhuja S. N und Christina Jane .I. „Detection of Grape Leaf Diseases Using a Traditional Neural Network“. In The International Conference on scientific innovations in Science, Technology, and Management. International Journal of Advanced Trends in Engineering and Management, 2023. http://dx.doi.org/10.59544/fnob9186/ngcesi23p91.
Der volle Inhalt der QuelleDeng, Yun, Zhaojun Chen und Shouxue Chen. „Fruit Leaf Pests and Diseases Identification Based on Data Enhancement and Transfer Learning“. In ICIIP 2019: 2019 4th International Conference on Intelligent Information Processing. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3378065.3378146.
Der volle Inhalt der QuelleShireesha, Guddeti, und B. Eswar Reddy. „Citrus Fruit and Leaf Disease Detection Using DenseNet“. In 2022 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON). IEEE, 2022. http://dx.doi.org/10.1109/smartgencon56628.2022.10083852.
Der volle Inhalt der QuelleSheikh, Md Helal, Tahmina Tashrif Mim, Md Shamim Reza und Most Hasna Hena. „Leaf Diseases Detection for Commercial Cultivation of Obsolete Fruit in Bangladesh using Image Processing System“. In 2019 8th International Conference System Modeling and Advancement in Research Trends (SMART). IEEE, 2019. http://dx.doi.org/10.1109/smart46866.2019.9117505.
Der volle Inhalt der QuelleMath, Gayatri, Vishwanath P, Myasar Mundher Adnan, R. Archana Reddy und S. Meenakshi Sundaram. „Apple Fruit leaf Disease Detection and Classification using Quantum Behaved Particle Swarm Optimization“. In 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS). IEEE, 2024. http://dx.doi.org/10.1109/icicacs60521.2024.10498615.
Der volle Inhalt der QuelleAhmed, Md Humayan, Tajul Islam und Romana Rahman Ema. „A New Hybrid Intelligent GAACO Algorithm for Automatic Image Segmentation and Plant Leaf or Fruit Diseases Identification Using TSVM Classifier“. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE, 2019. http://dx.doi.org/10.1109/ecace.2019.8679219.
Der volle Inhalt der QuelleSamoilova, Anna. „Effect of phages isolated from different sources against fire blight pathogen“. In 5th International Scientific Conference on Microbial Biotechnology. Institute of Microbiology and Biotechnology, Republic of Moldova, 2022. http://dx.doi.org/10.52757/imb22.29.
Der volle Inhalt der QuelleYathurshan, K., S. Barathy, G. Karini, P. Sajitha, Pradeep Abeygunawardhna und Kaushalya Rajapakse. „Leaf Guard: Detecting the Diseases in Banana Leaf“. In 2023 5th International Conference on Advancements in Computing (ICAC). IEEE, 2023. http://dx.doi.org/10.1109/icac60630.2023.10417613.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Leaf and Fruit Diseases"
Reisch, Bruce, Avichai Perl, Julie Kikkert, Ruth Ben-Arie und Rachel Gollop. Use of Anti-Fungal Gene Synergisms for Improved Foliar and Fruit Disease Tolerance in Transgenic Grapes. United States Department of Agriculture, August 2002. http://dx.doi.org/10.32747/2002.7575292.bard.
Der volle Inhalt der QuelleCohen, Roni, Kevin Crosby, Menahem Edelstein, John Jifon, Beny Aloni, Nurit Katzir, Haim Nerson und Daniel Leskovar. Grafting as a strategy for disease and stress management in muskmelon production. United States Department of Agriculture, Januar 2004. http://dx.doi.org/10.32747/2004.7613874.bard.
Der volle Inhalt der QuelleOri, Naomi, und Mark Estelle. Specific mediators of auxin activity during tomato leaf and fruit development. United States Department of Agriculture, Januar 2012. http://dx.doi.org/10.32747/2012.7597921.bard.
Der volle Inhalt der QuelleWilson, Charles, und Edo Chalutz. Biological Control of Postharvest Diseases of Citrus and Deciduous Fruit. United States Department of Agriculture, September 1991. http://dx.doi.org/10.32747/1991.7603518.bard.
Der volle Inhalt der QuelleMunkvold, Gary P., Charlie Martinson und John M. Shriver. Fungicidal Control of Leaf Diseases in High-Oil Hybrid Corn, 2000. Ames: Iowa State University, Digital Repository, 2001. http://dx.doi.org/10.31274/farmprogressreports-180814-242.
Der volle Inhalt der QuelleValverde, Rodrigo A., Aviv Dombrovsky und Noa Sela. Interactions between Bell pepper endornavirus and acute viruses in bell pepper and effect to the host. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7598166.bard.
Der volle Inhalt der QuellePortz, Dennis N., Leah B. Riesselman, Crystal Seeley, Paul Beamer und Gail R. Nonnecke. Effects of Leaf Removal on Fruit Quality of Wine Grapes Grown in Iowa. Ames: Iowa State University, Digital Repository, 2011. http://dx.doi.org/10.31274/farmprogressreports-180814-153.
Der volle Inhalt der QuellePortz, Dennis N., Leah B. Riesselman, Crystal Seeley, Paul Beamer und Gail R. Nonnecke. Effects of Leaf Removal on Fruit Quality of Wine Grapes Grown in Iowa. Ames: Iowa State University, Digital Repository, 2012. http://dx.doi.org/10.31274/farmprogressreports-180814-456.
Der volle Inhalt der QuelleKatan, Jaacov, James DeVay, Ezra Shabi und Yacov Pinkas. Postplant Control of Soilborne Diseases of Fruit Tree Crops by Soil Solarization. United States Department of Agriculture, Dezember 1992. http://dx.doi.org/10.32747/1992.7600055.bard.
Der volle Inhalt der QuelleSchaffer, Arthur A., D. Mason Pharr, Joseph Burger, James D. Burton und Eliezer Zamski. Aspects of Sugar Metabolism in Melon Fruit as Determinants of Fruit Quality. United States Department of Agriculture, September 1994. http://dx.doi.org/10.32747/1994.7568770.bard.
Der volle Inhalt der Quelle