Zeitschriftenartikel zum Thema „Lead styphnate“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Lead styphnate.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-26 Zeitschriftenartikel für die Forschung zum Thema "Lead styphnate" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Payne, J. R. „Thermochemistry of lead styphnate“. Thermochimica Acta 242 (August 1994): 13–21. http://dx.doi.org/10.1016/0040-6031(94)85003-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Fronabarger, John W., Michael D. Williams, William B. Sanborn, Damon A. Parrish und Magdy Bichay. „KDNP - A Lead Free Replacement for Lead Styphnate“. Propellants, Explosives, Pyrotechnics 36, Nr. 5 (21.09.2011): 459–70. http://dx.doi.org/10.1002/prep.201100055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Li, Ying, Wen-Yuan Zhao, Zhen-Hao Mi, Li Yang, Zun-Ning Zhou und Tong-Lai Zhang. „Graphene-modified explosive lead styphnate composites“. Journal of Thermal Analysis and Calorimetry 124, Nr. 2 (16.12.2015): 683–91. http://dx.doi.org/10.1007/s10973-015-5138-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

陈, 太林. „Comprehensive Treatment for Wastewater of Lead Styphnate“. Water pollution and treatment 05, Nr. 01 (2017): 1–5. http://dx.doi.org/10.12677/wpt.2017.51001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhou, Mingrui, Zhimin Li, Zunning Zhou, Tonglai Zhang, Bidong Wu, Li Yang und Jianguo Zhang. „Antistatic Modification of Lead Styphnate and Lead Azide for Surfactant Applications“. Propellants, Explosives, Pyrotechnics 38, Nr. 4 (15.04.2013): 569–76. http://dx.doi.org/10.1002/prep.201300007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Liu, Jianchao, Yutong Jiang, Wenchao Tong, Tonglai Zhang und Li Yang. „Thermal Kinetic Parameters of Lead Azide and Lead Styphnate with Antistatic Additives“. Propellants, Explosives, Pyrotechnics 41, Nr. 2 (04.09.2015): 267–72. http://dx.doi.org/10.1002/prep.201500138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Türker, Lemi. „PM3 treatment of lead styphnate and its mono ionic forms“. Journal of Molecular Structure: THEOCHEM 681, Nr. 1-3 (Juli 2004): 143–47. http://dx.doi.org/10.1016/j.theochem.2004.04.052.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Xue, Yan, Chang Jun Shi, Xiao Ming Ren, Lan Liu und Rui Zhen Xie. „Study of MEMS Based Micropyrotechnic Igniter“. Applied Mechanics and Materials 472 (Januar 2014): 750–55. http://dx.doi.org/10.4028/www.scientific.net/amm.472.750.

Der volle Inhalt der Quelle
Annotation:
Micro-electro-mechanical system (MEMS) have recently seen their field of application extended to military. This is mainly due to the fact that MEMS technologies present a great to reduce the mass, cost, power consumption, while improving the reliability, performance and smartness. Application of MEMS technology, the micropyrotechnic igniter are produced.The principle is based on the integration of lead styphnate (LTNR) material within a micropyrotechnic igniter, which is produced by MEMS with 3 by 3 micro-igniter. Each igniter contains three parts (the igniter chip, silicon chamber, lead styphnate). One import point is the optimization of the igniter process obtaining Ni-Cr bridges with about 13Ω, which is triggered by electrical power delivered to LTNR. The resistance of Ni-Cr bridges is used to sense the temperature on the LTNR which is in contact. The other one point is the optimization of silicon chamber process obtaining incorporate configuration of micropyrotechnic igniter. The ignition performance of micropyrotechnic igniter array are tested with ignition voltage less than 13V. The experimental results will deeply contribute to the micropyrotechnic system. This paper will discuss all these point.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lipanov, A. M., und V. D. Golovatenko. „Ignition of lead styphnate by a filament in an explosive attachment“. Journal of «Almaz – Antey» Air and Space Defence Corporation, Nr. 4 (20.01.2021): 69–76. http://dx.doi.org/10.38013/2542-0542-2020-4-69-76.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Szimhardt, Norbert, Maximilian H. H. Wurzenberger, Andreas Beringer, Lena J. Daumann und Jörg Stierstorfer. „Coordination chemistry with 1-methyl-5H-tetrazole: cocrystallization, laser-ignition, lead-free primary explosives – one ligand, three goals“. Journal of Materials Chemistry A 5, Nr. 45 (2017): 23753–65. http://dx.doi.org/10.1039/c7ta07780g.

Der volle Inhalt der Quelle
Annotation:
Numerous energetic coordination complexes (MnII, FeII, CoII, NiII, CuII, ZnII, and AgI) using 1-methyl-tetrazole as the ligand were synthesized and tuned by different counteranions (e.g. NO3, ClO4, picrate, and styphnate). They show great potential for mechanical or optical initiation systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Whelan, Daniel J., Branka Pletikapa und Mark Fitzgerald. „The thermal decomposition of basic lead styphnate RD 1349 at its ignition temperature“. Journal of Energetic Materials 7, Nr. 1-2 (März 1989): 133–50. http://dx.doi.org/10.1080/07370658908012563.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Li, Hanjian, Qing Zhou, Hui Ren, Qingjie Jiao, Shujing Du und Guili Yang. „Ignition characteristics of semiconductor bridge based on lead styphnate and lead azide charges under capacitor discharge conditions“. Sensors and Actuators A: Physical 241 (April 2016): 27–33. http://dx.doi.org/10.1016/j.sna.2016.02.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Li, Zhi-Min, Ming-Rui Zhou, Tong-Lai Zhang, Jian-Guo Zhang, Li Yang und Zun-Ning Zhou. „The facile synthesis of graphene nanoplatelet–lead styphnate composites and their depressed electrostatic hazards“. Journal of Materials Chemistry A 1, Nr. 41 (2013): 12710. http://dx.doi.org/10.1039/c3ta13177g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Dvorovenko, N. „The disclosure of domain structure in microcrystals of lead styphnate by the means of irradiation“. Solid State Ionics 101-103, Nr. 1-2 (November 1997): 293–97. http://dx.doi.org/10.1016/s0167-2738(97)00362-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

DVOROVENKO, N. „The disclosure of domain structure in microcrystals of lead styphnate by the means of irradiation“. Solid State Ionics 101-103 (November 1997): 293–97. http://dx.doi.org/10.1016/s0167-2738(97)84045-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Zhao, Shuangfei, Fanyuhui Yan, Peng Zhu, Yong Yang, Huanming Xia, Ruiqi Shen und Yinghua Ye. „Micro‐Segmented Flow Technology Applied for Synthesis and Shape Control of Lead Styphnate Micro‐Particles“. Propellants, Explosives, Pyrotechnics 43, Nr. 3 (19.12.2017): 286–93. http://dx.doi.org/10.1002/prep.201700246.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Ma, Peng, Lin Zhang, Shunguan Zhu, Lei Zhang und Houhe Chen. „Non-plasma ignition of lead styphnate by a semiconductor bridge and its comparison with plasma ignition“. Combustion, Explosion, and Shock Waves 47, Nr. 1 (Januar 2011): 103–9. http://dx.doi.org/10.1134/s001050821101014x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Ji, Fangzhou, Haoxiang Yin, Heng Zhang, Yunhong Zhang und Bo Lai. „Treatment of military primary explosives wastewater containing lead styphnate (LS) and lead azide (LA) by mFe 0 -PS-O 3 process“. Journal of Cleaner Production 188 (Juli 2018): 860–70. http://dx.doi.org/10.1016/j.jclepro.2018.04.029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Yan, Yun-Fan, Jian-Gang Xu, Fei Wen, Yu Zhang, Hong-Yi Bian, Baoyi Li, Ningning Zhang, Fa-Kun Zheng und Guo-Cong Guo. „Sensitive structural motifs separately distributed in azide-based 3D EMOFs: A primary explosive with excellent initiation ability and enhanced stability“. Inorganic Chemistry Frontiers, 2022. http://dx.doi.org/10.1039/d2qi01610a.

Der volle Inhalt der Quelle
Annotation:
Azide-based energetic metal−organic frameworks (EMOFs) with remarkable initiation capability can be expected to replace lead-based primers (lead azide, LA; lead styphnate, LS). However, most of them are not stable enough...
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Herweyer, Darren, Jaclyn L. Brusso und Muralee Murugesu. „Modern trends in “Green” primary energetic materials“. New Journal of Chemistry, 2021. http://dx.doi.org/10.1039/d1nj01227d.

Der volle Inhalt der Quelle
Annotation:
The evergrowing demand for cleaner, high-performing energetic materials (EMs) has led to a quest for replacement of currently used toxic metal-based traditional energetic compounds such as lead azide and lead styphnate.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Hosseini, Seyed Ghorban, Hossein Sharifnezhad, Manoochehr Fathollahi, Abdalfarid Abotorabe und Hamid Reza Ghaenii. „Improvement of electrostatic discharge sensitivity of lead styphnate particles using some polymer coating agents“. Journal of Energetic Materials, 28.05.2021, 1–12. http://dx.doi.org/10.1080/07370652.2021.1929572.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Tian, Momang, Qian Yu, Yuewen Lu, Ji-Min Han und Li Yang. „Low-temperature structural deformation and fragmentation of lead styphnate by in-situ experiments and calculation“. Chemical Engineering Journal, Oktober 2023, 147030. http://dx.doi.org/10.1016/j.cej.2023.147030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Lu, Yuewen, Qian Yu, Momang Tian und Li Yang. „Insights into accelerated aging behavior of lead styphnate based on high temperature and high humidity conditions“. Journal of Thermal Analysis and Calorimetry, 24.05.2023. http://dx.doi.org/10.1007/s10973-023-12234-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Li, Zhimin, Huisheng Huang, Tonglai Zhang, Shengtao Zhang, Jianguo Zhang und Li Yang. „First-principles study of electric field effects on the structure, decomposition mechanism, and stability of crystalline lead styphnate“. Journal of Molecular Modeling 20, Nr. 1 (Januar 2014). http://dx.doi.org/10.1007/s00894-014-2072-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Endrass, Simon, Thomas Klapötke, Marcus Lommel, Joerg Stierstorfer, Martin Weidemann und Melanie Werner. „1‐ and 2‐Tetrazolylacetonitrile as Versatile Ligands for Laser Ignitable Energetic Coordination Compounds“. ChemPlusChem, 04.03.2024. http://dx.doi.org/10.1002/cplu.202400031.

Der volle Inhalt der Quelle
Annotation:
Abstract: 1‐ and 2‐Tetrazolylacetonitrile (1‐ and 2‐TAN) have been synthesized by the reaction of chloroacetonitrile with 1H‐Tetrazole under basic conditions. They further were reacted with sodium azide in the presence of zinc(II) chloride to form 5‐((1H‐tetrazol‐1‐yl)methyl)‐1H‐tetrazole (1‐HTMT) and 5‐((2H‐tetrazol‐2‐yl)methyl)‐1H‐tetrazole (2‐HTMT). The nitrogen‐rich compounds have been applied as ligands for Energetic Coordination Compounds (ECCs) and show interesting coordinative behavior due to different bridging modes. The structural variability of the compounds has been proved by low‐temperature X‐ray analysis. The ECCs were analyzed for their sensitivities to provide information about the safety of handling and their capability to serve as primary explosives in detonator setups to replace the commonly used lead styphnate and azide. All colored ECCs were evaluated for their ignitability by a laser diode in translucent polycarbonate primer caps. In addition, the spin‐crossover characteristics of [Fe(1‐TAN)6](ClO4)2 were highlighted by the measurement of the temperature‐dependent susceptibility curve.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Yang, Tsung‐Mao, Jia‐Tong Lai, Wen‐Hsiang Li, Cheng‐Hsiung Peng, Jin‐Shuh Li und Kai‐Tai Lu. „Study on synthesis and characterization of spherical copper(I) 5‐nitrotetrazolate (DBX‐1)“. Propellants, Explosives, Pyrotechnics, 02.11.2023. http://dx.doi.org/10.1002/prep.202300226.

Der volle Inhalt der Quelle
Annotation:
AbstractTraditional primary explosives often contain heavy metals, especially toxic lead, such as lead azide (LA) and lead styphnate (LS) that can cause environmental pollution problems. Copper(I) 5‐nitrotetrazolate (DBX‐1) is a green primary explosive without toxic heavy metals, which is considered as one of the most promising alternatives to LA. DBX‐1 is usually synthesized from sodium 5‐nitrotetrazolate dihydrate (NaNT ⋅ 2H2O) and copper(I) chloride (CuCl). However, most of the synthesized products are irregular flakes with poor flowability, which affects the loadability. In this study, dextrin was used as a crystal shape modifier to improve the morphology of the synthesized product. Taguchi analysis method was used to determine the optimal experimental conditions for obtaining the spherical DBX‐1 with smaller particle size. The synthesized products were characterized by SEM, FTIR, UV‐Vis, STA TG‐DSC and VST, and their sensitivity was determined by BAM fallhammer, BAM friction tester and electrostatic spark sensitivity tester. The experiment results showed that the optimal combination of synthesis parameters was the NaNT ⋅ 2H2O concentration of 4.4 wt.%, the reaction temperature of 100 °C, the reaction time of 75 min and the additional dextrin solution of 5.0 mL. The average particle size of the synthesized spherical DBX‐1 was 33.0 μm. The decomposition activation energy was calculated by Kissinger method and Ozawa method to be 178.5 and 178.8 kJ/mol, respectively. The compound had good chemical stability. In addition, the sensitivity of spherical DBX‐1 was lower compared to that of flaky DBX‐1 and LA.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie