Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lattice theory“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lattice theory" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lattice theory"
Day, Alan. „Doubling Constructions in Lattice Theory“. Canadian Journal of Mathematics 44, Nr. 2 (01.04.1992): 252–69. http://dx.doi.org/10.4153/cjm-1992-017-7.
Der volle Inhalt der QuelleHarremoës, Peter. „Entropy Inequalities for Lattices“. Entropy 20, Nr. 10 (12.10.2018): 784. http://dx.doi.org/10.3390/e20100784.
Der volle Inhalt der QuelleFlaut, Cristina, Dana Piciu und Bianca Liana Bercea. „Some Applications of Fuzzy Sets in Residuated Lattices“. Axioms 13, Nr. 4 (18.04.2024): 267. http://dx.doi.org/10.3390/axioms13040267.
Der volle Inhalt der QuelleMcCulloch, Ryan. „Finite groups with a trivial Chermak–Delgado subgroup“. Journal of Group Theory 21, Nr. 3 (01.05.2018): 449–61. http://dx.doi.org/10.1515/jgth-2017-0042.
Der volle Inhalt der QuelleJežek, J., P. PudláK und J. Tůma. „On equational theories of semilattices with operators“. Bulletin of the Australian Mathematical Society 42, Nr. 1 (August 1990): 57–70. http://dx.doi.org/10.1017/s0004972700028148.
Der volle Inhalt der QuelleBallal, Sachin, und Vilas Kharat. „Zariski topology on lattice modules“. Asian-European Journal of Mathematics 08, Nr. 04 (17.11.2015): 1550066. http://dx.doi.org/10.1142/s1793557115500667.
Der volle Inhalt der QuelleJežek, Jaroslav, und George F. McNulty. „The existence of finitely based lower covers for finitely based equational theories“. Journal of Symbolic Logic 60, Nr. 4 (Dezember 1995): 1242–50. http://dx.doi.org/10.2307/2275885.
Der volle Inhalt der QuelleFuta, Yuichi, und Yasunari Shidama. „Lattice of ℤ-module“. Formalized Mathematics 24, Nr. 1 (01.03.2016): 49–68. http://dx.doi.org/10.1515/forma-2016-0005.
Der volle Inhalt der QuelleBronzan, J. B. „Hamiltonian lattice gauge theory: wavefunctions on large lattices“. Nuclear Physics B - Proceedings Supplements 30 (März 1993): 916–19. http://dx.doi.org/10.1016/0920-5632(93)90356-b.
Der volle Inhalt der QuelleJANSEN, KARL. „LATTICE FIELD THEORY“. International Journal of Modern Physics E 16, Nr. 09 (Oktober 2007): 2638–79. http://dx.doi.org/10.1142/s0218301307008355.
Der volle Inhalt der QuelleDissertationen zum Thema "Lattice theory"
Race, David M. (David Michael). „Consistency in Lattices“. Thesis, North Texas State University, 1986. https://digital.library.unt.edu/ark:/67531/metadc331688/.
Der volle Inhalt der QuelleRadu, Ion. „Stone's representation theorem“. CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3087.
Der volle Inhalt der QuelleEndres, Michael G. „Topics in lattice field theory /“. Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/9713.
Der volle Inhalt der QuelleBowman, K. „A lattice theory for algebras“. Thesis, Lancaster University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234611.
Der volle Inhalt der QuelleMichels, Amanda Therese. „Aspects of lattice gauge theory“. Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297217.
Der volle Inhalt der QuelleBuckle, John Francis. „Computational aspects of lattice theory“. Thesis, University of Warwick, 1989. http://wrap.warwick.ac.uk/106446/.
Der volle Inhalt der QuelleCraig, Andrew Philip Knott. „Lattice-valued uniform convergence spaces the case of enriched lattices“. Thesis, Rhodes University, 2008. http://hdl.handle.net/10962/d1005225.
Der volle Inhalt der QuellePugh, David John Rhydwyn. „Topological structures in lattice gauge theory“. Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279896.
Der volle Inhalt der QuelleSchaich, David. „Strong dynamics and lattice gauge theory“. Thesis, Boston University, 2012. https://hdl.handle.net/2144/32057.
Der volle Inhalt der QuelleIn this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ~ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses and other properties of the new particles predicted by these theories. I find S > 0.1 in the specific theories I study. Although this result still disagrees with experiment, it is much closer to the experimental value than is the conventional wisdom S > 0.3. These results encourage further lattice studies to search for experimentally viable strongly-interacting theories of EWSB.
Schenk, Stefan. „Density functional theory on a lattice“. kostenfrei, 2009. http://d-nb.info/998385956/34.
Der volle Inhalt der QuelleBücher zum Thema "Lattice theory"
Bunk, B., K. H. Mütter und K. Schilling, Hrsg. Lattice Gauge Theory. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2231-3.
Der volle Inhalt der QuelleGrätzer, George. General Lattice Theory. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9326-8.
Der volle Inhalt der QuelleGrätzer, George. Lattice Theory: Foundation. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0018-1.
Der volle Inhalt der Quelleservice), SpringerLink (Online, Hrsg. Lattice Theory: Foundation. Basel: Springer Basel AG, 2011.
Den vollen Inhalt der Quelle findenStern, Manfred. Semimodular lattices: Theory and applications. Cambridge: Cambridge University Press, 1999.
Den vollen Inhalt der Quelle findenKrätzel, Ekkehard. Lattice points. Dordrecht: Kluwer Academic Publishers, 1988.
Den vollen Inhalt der Quelle findenSatz, Helmut, Isabel Harrity und Jean Potvin, Hrsg. Lattice Gauge Theory ’86. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1909-2.
Der volle Inhalt der QuelleSatz, H. Lattice Gauge Theory '86. Boston, MA: Springer US, 1987.
Den vollen Inhalt der Quelle findenH, Satz, Harrity Isabel, Potvin Jean, North Atlantic Treaty Organization. Scientific Affairs Division. und International Workshop "Lattice Gauge Theory 1986" (1986 : Brookhaven National Laboratory), Hrsg. Lattice gauge theory '86. New York: Plenum Press, 1987.
Den vollen Inhalt der Quelle findenos, Paul Erd. Lattice points. Harlow: Longman Scientific & Technical, 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Lattice theory"
Zheng, Zhiyong, Kun Tian und Fengxia Liu. „Random Lattice Theory“. In Financial Mathematics and Fintech, 1–32. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7644-5_1.
Der volle Inhalt der QuelleAl-Haj Baddar, Sherenaz W., und Kenneth E. Batcher. „Lattice Theory“. In Designing Sorting Networks, 61–71. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1851-1_10.
Der volle Inhalt der QuelleRitter, Gerhard X., und Gonzalo Urcid. „Lattice Theory“. In Introduction to Lattice Algebra, 81–109. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003154242-3.
Der volle Inhalt der QuelleYadav, Santosh Kumar. „Lattice Theory“. In Discrete Mathematics with Graph Theory, 271–304. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21321-2_6.
Der volle Inhalt der QuelleGrätzer, George. „Lattice Constructions“. In Lattice Theory: Foundation, 255–306. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0018-1_4.
Der volle Inhalt der QuelleStone, Michael. „Lattice Field Theory“. In Graduate Texts in Contemporary Physics, 185–200. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0507-4_15.
Der volle Inhalt der QuelleYanagihara, Ryosuke. „Lattice Field Theory“. In Springer Theses, 37–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6234-8_3.
Der volle Inhalt der QuelleGrätzer, George. „First Concepts“. In General Lattice Theory, 1–77. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_1.
Der volle Inhalt der QuelleGrätzer, George. „Distributive Lattices“. In General Lattice Theory, 79–168. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_2.
Der volle Inhalt der QuelleGrätzer, George. „Congruences and Ideals“. In General Lattice Theory, 169–210. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lattice theory"
Monahan, Christopher. „Automated Lattice Perturbation Theory“. In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0021.
Der volle Inhalt der QuelleLambrou, Eliana, Luigi Del Debbio, R. D. Kenway und Enrico Rinaldi. „Searching for a continuum 4D field theory arising from a 5D non-abelian gauge theory“. In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0107.
Der volle Inhalt der QuelleBursa, F., und Michael Kroyter. „Lattice String Field Theory“. In The XXVIII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.105.0047.
Der volle Inhalt der QuelleKieburg, Mario, Jacobus Verbaarschot und Savvas Zafeiropoulos. „A classification of 2-dim Lattice Theory“. In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0337.
Der volle Inhalt der QuelleShao, Yingchao, Li Fu, Fei Hao und Keyun Qin. „Rough Lattice: A Combination with the Lattice Theory and the Rough Set Theory“. In 2016 International Conference on Mechatronics, Control and Automation Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/mcae-16.2016.23.
Der volle Inhalt der QuelleBietenholz, Wolfgang, Ivan Hip und David Landa-Marban. „Spectral Properties of a 2d IR Conformal Theory“. In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0486.
Der volle Inhalt der QuelleZubkov, Mikhail. „Gauge theory of Lorentz group on the lattice“. In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0095.
Der volle Inhalt der QuelleVeernala, Aarti, und Simon Catterall. „Four Fermion Interactions in Non Abelian Gauge Theory“. In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0108.
Der volle Inhalt der QuelleBergner, Georg, Jens Langelage und Owe Philipsen. „Effective lattice theory for finite temperature Yang Mills“. In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0133.
Der volle Inhalt der QuelleHesse, Dirk, Stefan Sint, Francesco Di Renzo, Mattia Dalla Brida und Michele Brambilla. „The Schrödinger Functional in Numerical Stochastic Perturbation Theory“. In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0325.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Lattice theory"
McCune, W., und R. Padmanabhan. Single identities for lattice theory and for weakly associative lattices. Office of Scientific and Technical Information (OSTI), März 1995. http://dx.doi.org/10.2172/510566.
Der volle Inhalt der QuelleYee, Ken. Lattice gaugefixing and other optics in lattice gauge theory. Office of Scientific and Technical Information (OSTI), Juni 1992. http://dx.doi.org/10.2172/10156563.
Der volle Inhalt der QuelleYee, Ken. Lattice gaugefixing and other optics in lattice gauge theory. Office of Scientific and Technical Information (OSTI), Juni 1992. http://dx.doi.org/10.2172/5082303.
Der volle Inhalt der QuelleBecher, Thomas G. Continuum methods in lattice perturbation theory. Office of Scientific and Technical Information (OSTI), November 2002. http://dx.doi.org/10.2172/808671.
Der volle Inhalt der QuelleHasslacher, B. Lattice gas hydrodynamics: Theory and simulations. Office of Scientific and Technical Information (OSTI), Januar 1993. http://dx.doi.org/10.2172/6441616.
Der volle Inhalt der QuelleHasslacher, B. Lattice gas hydrodynamics: Theory and simulations. Office of Scientific and Technical Information (OSTI), Januar 1993. http://dx.doi.org/10.2172/6590163.
Der volle Inhalt der QuelleBrower, Richard C. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1127446.
Der volle Inhalt der QuelleNegele, John W. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), Juni 2012. http://dx.doi.org/10.2172/1165874.
Der volle Inhalt der QuelleReed, Daniel, A. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), Mai 2008. http://dx.doi.org/10.2172/951263.
Der volle Inhalt der QuelleCreutz, M. Lattice gauge theory and Monte Carlo methods. Office of Scientific and Technical Information (OSTI), November 1988. http://dx.doi.org/10.2172/6530895.
Der volle Inhalt der Quelle