Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lattice quotients“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lattice quotients" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lattice quotients"
Mühle, Henri. „Noncrossing Arc Diagrams, Tamari Lattices, and Parabolic Quotients of the Symmetric Group“. Annals of Combinatorics 25, Nr. 2 (10.04.2021): 307–44. http://dx.doi.org/10.1007/s00026-021-00532-9.
Der volle Inhalt der QuelleDubsky, Brendan. „Incidence Category of the Young Lattice, Injections Between Finite Sets, and Koszulity“. Algebra Colloquium 28, Nr. 02 (11.05.2021): 195–212. http://dx.doi.org/10.1142/s1005386721000171.
Der volle Inhalt der QuelleThumbakara, Rajesh K. „On Intuitionistic Fuzzy Filters of Intuitionistic Fuzzy Coframes“. Journal of Mathematics 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/793824.
Der volle Inhalt der QuelleAlvarado-García, Alejandro, César Cejudo-Castilla, Hugo Alberto Rincón-Mejía und Ivan Fernando Vilchis-Montalvo. „Pseudocomplements and strong pseudocomplements in lattices of module classes“. Journal of Algebra and Its Applications 17, Nr. 01 (Januar 2018): 1850016. http://dx.doi.org/10.1142/s0219498818500160.
Der volle Inhalt der QuelleWójtowicz, Marek. „The lattice-isometric copies ofℓ∞(Γ)in quotients of Banach lattices“. International Journal of Mathematics and Mathematical Sciences 2003, Nr. 47 (2003): 3003–6. http://dx.doi.org/10.1155/s0161171203210528.
Der volle Inhalt der QuellePilaud, Vincent. „Brick polytopes, lattice quotients, and Hopf algebras“. Journal of Combinatorial Theory, Series A 155 (April 2018): 418–57. http://dx.doi.org/10.1016/j.jcta.2017.11.014.
Der volle Inhalt der QuelleMa, Jingjing, und R. H. Redfield. „Fields of quotients of lattice-ordered domains“. algebra universalis 52, Nr. 4 (Februar 2005): 383–401. http://dx.doi.org/10.1007/s00012-004-1875-z.
Der volle Inhalt der QuelleDemonet, Laurent, Osamu Iyama, Nathan Reading, Idun Reiten und Hugh Thomas. „Lattice theory of torsion classes: Beyond 𝜏-tilting theory“. Transactions of the American Mathematical Society, Series B 10, Nr. 18 (25.04.2023): 542–612. http://dx.doi.org/10.1090/btran/100.
Der volle Inhalt der QuelleKAKARIADIS, EVGENIOS T. A. „Finite-dimensional approximations for Nica–Pimsner algebras“. Ergodic Theory and Dynamical Systems 40, Nr. 12 (09.08.2019): 3375–402. http://dx.doi.org/10.1017/etds.2019.44.
Der volle Inhalt der QuelleJenča, G., und S. Pulmannová. „Ideals and quotients in lattice ordered effect algebras“. Soft Computing 5, Nr. 5 (Oktober 2001): 376–80. http://dx.doi.org/10.1007/s005000100139.
Der volle Inhalt der QuelleDissertationen zum Thema "Lattice quotients"
Tamayo, Jiménez Daniel. „Combinatorics of permutreehedra and geometry of s-permutahedra“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG066.
Der volle Inhalt der QuelleIn algebraic combinatorics, lattices are partially ordered sets which possess both meet and join operations. The weak order on permutations is a classical example of a lattice that has a rich combinatorial structure. This has made it a starting point from which other combinatorial objects have been defined. For this thesis, we focus on studying two different families of lattices in relation to the weak order: the permutree lattices and the s-weak order. The first part of the thesis involves the theory of lattice quotients of the weak order building upon the work of N. Reading, specifically focusing on the family of permutree quotients of the weak order. Considering them as permutrees, as done by V. Pilaud and V. Pons, we extend the technology of bracket vectors from binary trees by defining inversion and cubic vectors. The inversion vector captures the meet operation of these lattices while the cubic vector helps realizes them geometrically via a cubical configuration. Changing our point of view and studying these quotients through the minimal elements of their congruence classes, we use the Coxeter Type A description of permutations to characterize permutrees using automata. These automata capture the pattern avoidance of ijk and/or kij implied by these quotients and allow us to define algorithms which generalize stack sorting. In the case where the quotient corresponds to a Cambrian lattice we relate our automata with Coxeter sorting. We give some insight about the same phenomenon for Coxeter groups of types B and D. The second part of this thesis stems from the work of V. Pons and C. Ceballos who defined the s-weak order on s-decreasing trees where s is a sequence of non-negative integers. In the case of s=(1,ldots,1) this definition recovers the weak order. In their first article, the authors conjectured that the s-permutahedron could be realized in space as a polyhedral subdivision of a zonotope. We give a positive answer to their conjecture when s is a sequence of positive integers by defining a graph whose flow polytopes allows us to recover the s-weak order. We use techniques from flows on graphs, discrete geometry, and tropical geometry to obtain realizations of the s-permutahedron with different properties. With the idea of describing the lattice quotients of the s-weak order, we study their join-irreducibles. We introduce as well a graph operation to define an analog of permutree quotients on these lattices
Boustique, Hatim. „LATTICE-VALUED CONVERGENCE: QUOTIENT MAPS“. Doctoral diss., Orlando, Fla. : University of Central Florida, 2008. http://purl.fcla.edu/fcla/etd/CFE0002369.
Der volle Inhalt der QuelleMatlabyana, Mack Zakaria. „Coz-related and other special quotients in frames“. Thesis, 2012. http://hdl.handle.net/10500/6050.
Der volle Inhalt der QuelleMathematical Science
D. Phil. (Mathematics)
(11199984), Frankie Chan. „Finite quotients of triangle groups“. Thesis, 2021.
Den vollen Inhalt der Quelle finden(11008509), Nathanael D. Cox. „Two Problems in Applied Topology“. Thesis, 2021.
Den vollen Inhalt der Quelle findenBücher zum Thema "Lattice quotients"
Ball, Richard N. C- and C* -quotients in pointfree topology. Warszawa: Polska Akademia Nauk, Instytut Matematyczny, 2002.
Den vollen Inhalt der Quelle findenCaramello, Olivia. Theories, Sites, Toposes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198758914.001.0001.
Der volle Inhalt der QuelleBoudreau, Joseph F., und Eric S. Swanson. Interpolation and extrapolation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198708636.003.0004.
Der volle Inhalt der QuelleBuchteile zum Thema "Lattice quotients"
Zheng, Zhiyong, Kun Tian und Fengxia Liu. „Cyclic Lattices and Ideal Lattices“. In Financial Mathematics and Fintech, 119–42. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7644-5_5.
Der volle Inhalt der QuelleZhiyong, Zheng, Liu Fengxia, Lu Yunfan und Tian Kun. „Cyclic Lattices, Ideal Lattices, and Bounds for the Smoothing Parameter“. In Financial Mathematics and Fintech, 129–53. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2366-3_7.
Der volle Inhalt der QuelleLevy, D. „The Structure of Finite Dimensional Affine Hecke Algebra Quotients and their Realization in 2D Lattice Models“. In NATO ASI Series, 183–91. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1612-9_16.
Der volle Inhalt der QuelleAkleylek, Sedat, und Zaliha Yuce Tok. „Computational Aspects of Lattice-Based Cryptography on Graphical Processing Unit“. In Improving Information Security Practices through Computational Intelligence, 255–84. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9426-2.ch010.
Der volle Inhalt der Quelle„Chapter 28: Symmetries of Lattices and Their Quotients“. In Dynamics and Bifurcation in Networks: Theory and Applications of Coupled Differential Equations, 709–31. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2023. http://dx.doi.org/10.1137/1.9781611977332.ch28.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lattice quotients"
Yu, Yuan. „Quotient lattice and incremental construction of concept lattices“. In 2010 2nd International Conference on Information Science and Engineering (ICISE). IEEE, 2010. http://dx.doi.org/10.1109/icise.2010.5689744.
Der volle Inhalt der QuelleKondo, Michiro. „Quotient Structures of Non-Commutative Residuated Lattices“. In 2015 IEEE International Symposium on Multiple-Valued Logic (ISMVL). IEEE, 2015. http://dx.doi.org/10.1109/ismvl.2015.30.
Der volle Inhalt der Quelle