Auswahl der wissenschaftlichen Literatur zum Thema „Lattice gauge theories“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lattice gauge theories" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Lattice gauge theories":

1

Hasenfratz, A., und P. Hasenfratz. „Lattice Gauge Theories“. Annual Review of Nuclear and Particle Science 35, Nr. 1 (Dezember 1985): 559–604. http://dx.doi.org/10.1146/annurev.ns.35.120185.003015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Shuo-hong, Guo. „Lattice Gauge-Theories“. Communications in Theoretical Physics 4, Nr. 5 (September 1985): 613–30. http://dx.doi.org/10.1088/0253-6102/4/5/613.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Majumdar, Peter. „Lattice gauge theories“. Scholarpedia 7, Nr. 4 (2012): 8615. http://dx.doi.org/10.4249/scholarpedia.8615.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Golterman, Maarten. „Lattice chiral gauge theories“. Nuclear Physics B - Proceedings Supplements 94, Nr. 1-3 (März 2001): 189–203. http://dx.doi.org/10.1016/s0920-5632(01)00953-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Barbiero, Luca, Christian Schweizer, Monika Aidelsburger, Eugene Demler, Nathan Goldman und Fabian Grusdt. „Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to ℤ2 lattice gauge theories“. Science Advances 5, Nr. 10 (Oktober 2019): eaav7444. http://dx.doi.org/10.1126/sciadv.aav7444.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
From the standard model of particle physics to strongly correlated electrons, various physical settings are formulated in terms of matter coupled to gauge fields. Quantum simulations based on ultracold atoms in optical lattices provide a promising avenue to study these complex systems and unravel the underlying many-body physics. Here, we demonstrate how quantized dynamical gauge fields can be created in mixtures of ultracold atoms in optical lattices, using a combination of coherent lattice modulation with strong interactions. Specifically, we propose implementation of ℤ2 lattice gauge theories coupled to matter, reminiscent of theories previously introduced in high-temperature superconductivity. We discuss a range of settings from zero-dimensional toy models to ladders featuring transitions in the gauge sector to extended two-dimensional systems. Mastering lattice gauge theories in optical lattices constitutes a new route toward the realization of strongly correlated systems, with properties dictated by an interplay of dynamical matter and gauge fields.
6

Fachin, Stefano, und Claudio Parrinello. „Global gauge fixing in lattice gauge theories“. Physical Review D 44, Nr. 8 (15.10.1991): 2558–64. http://dx.doi.org/10.1103/physrevd.44.2558.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ryang, S., T. Saito, F. Oki und K. Shigemoto. „Lattice thermodynamics for gauge theories“. Physical Review D 31, Nr. 6 (15.03.1985): 1519–21. http://dx.doi.org/10.1103/physrevd.31.1519.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

PESANDO, IGOR. „VECTOR INDUCED LATTICE GAUGE THEORIES“. Modern Physics Letters A 08, Nr. 29 (21.09.1993): 2793–801. http://dx.doi.org/10.1142/s0217732393003184.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We consider vector induced lattice gauge theories, in particular we consider the QED induced and we show that at negative temperature corresponds to the dimer problem while at positive temperature it describes a gas of branched polymers with loops. We show that the fermionic models have D c = 6 as upper critical dimension for N ≠ ∞ while the N = ∞ model has no upper critical dimension. We also show that the bosonic models without potential are not critical in the range of stability of the integral definition of the partition function but they behave as the fermionic models when we analytically continue the free energy.
9

Pendleton, Brian. „Acceleration of lattice gauge theories“. Nuclear Physics B - Proceedings Supplements 4 (April 1988): 590–94. http://dx.doi.org/10.1016/0920-5632(88)90160-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Maiani, L., G. C. Rossi und M. Testa. „On lattice chiral gauge theories“. Physics Letters B 261, Nr. 4 (Juni 1991): 479–85. http://dx.doi.org/10.1016/0370-2693(91)90459-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Lattice gauge theories":

1

Lowe, A. P. „Lattice gauge-Higgs theories“. Thesis, University of Southampton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378268.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

La, Cock Pierre. „Introduction to lattice gauge theories“. Master's thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/17085.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Includes bibliographical references.
The thesis is organized as follows. Part I is a general introduction to LGT. The theory is discussed from first principles, so that for the interested reader no previous knowledge is required, although it is assumed that he/she will be familiar with the rudiments of relativistic quantum mechanics. Part II is a review of QCD on the lattice at finite temperature and density. Monte Carlo results and analytical methods are discussed. An attempt has been made to include most relevant data up to the end of 1987, and to update some earlier reviews existing on the subject. To facilitate an understanding of the techniques used in LGT, provision has been made in the form of a separate Chapter on Group Theory and Integration, as well as four Appendices, one of which deals with Grassmann variables and integration.
3

Coyle, P. K. „Accelerated techniques in lattice gauge theories“. Thesis, Swansea University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636313.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Lattice gauge theories, through Monte-Carlo simulations, provide the most powerful methods available for the non-perturbative study of many models. These techniques, however, become very inefficient as we approach the continuum limit, a problem known as Critical Slowing Down. Over recent years cluster methods have generated significant improvements over established techniques. In part I of this thesis we introduce such an algorithm for the Z2 Kalb-Ramond model in four dimensions, and find that we can improve the efficiency of the simulation by orders of magnitude. In the second part of this thesis we make preliminary investigations towards using duality transformations as an aid to improving numerical simulations, (where by duality we mean an extension of the technique of Kramers and Wannier). We study the compact U(1) lattice gauge theory in (2+1) dimensions as an example. The dual to this model is known to be a discrete Gaussian Solid On Solid model. We find the discrete nature of the model makes each update faster. However the structures which develop at high temperature, make naive simulations, overall, inefficient.
4

Coddington, P. D. „Deconfinement transitions in lattice gauge theories]“. Thesis, University of Southampton, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381129.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pickavance, Jennifer Linda. „Properties of mesons from lattice gauge theories“. Thesis, University of Liverpool, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442758.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Baillie, Clive Fraser. „Lattice gauge theories : dynamical fermions and parallel computation“. Thesis, University of Edinburgh, 1986. http://hdl.handle.net/1842/10701.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Benassi, Costanza. „Su(3) lattice gauge theories and spin chains“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7171/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
I modelli su reticolo con simmetrie SU(n) sono attualmente oggetto di studio sia dal punto di vista sperimentale, sia dal punto di vista teorico; particolare impulso alla ricerca in questo campo è stato dato dai recenti sviluppi in campo sperimentale per quanto riguarda la tecnica dell’intrappolamento di atomi ultrafreddi in un reticolo ottico. In questa tesi viene studiata, sia con tecniche analitiche sia con simulazioni numeriche, la generalizzazione del modello di Heisenberg su reticolo monodimensionale a simmetria SU(3). In particolare, viene proposto un mapping tra il modello di Heisenberg SU(3) e l’Hamiltoniana con simmetria SU(2) bilineare-biquadratica con spin 1. Vengono inoltre presentati nuovi risultati numerici ottenuti con l’algoritmo DMRG che confermano le previsioni teoriche in letteratura sul modello in esame. Infine è proposto un approccio per la formulazione della funzione di partizione dell’Hamiltoniana bilineare-biquadratica a spin-1 servendosi degli stati coerenti per SU(3).
8

Stephenson, David Brian. „Non-perturbative field theories“. Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/13009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

de, Flôor e. Silva Diego. „Critical behavior of multiflavor gauge theories“. Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6573.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
It is expected that the number of flavors in a gauge theory plays an important role in model building for physics beyond the standard model. We study the phase structure of the 12 flavor case through lattice simulations using a Rational Hybrid Monte Carlo (RHMC) algorithm for different masses, betas, and volumes, to investigate the question of conformality for this number of flavors. In particular, we analyze the Fisher's zeroes, in the vicinity of the endpoint of a line of first order phase transitions. This is motivated by previous studies that show how the complex renormalization group (RG) flows can be understood by looking at the zeros. The pinching of the imaginary part of these zeros with respect to increasing volume provides information about a possible unconventional continuum limit. We also study the mass spectrum of a multiflavor linear sigma model with a splitting of fermion masses. The single mass linear sigma model successfully described a light sigma in accordance to recent lattice results. The extension to two masses predicts an unusual ordering of scalar masses, providing incentive for further lattice simulations with split quark mass.
10

Lumia, Luca. „Digital quantum simulations of Yang-Mills lattice gauge theories“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22355/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
I metodi di calcolo tradizionali per le teorie di gauge su reticolo risultano problematici in regioni di diagrammi di fase a grandi valori del potenziale chimico o quando sono utilizzate per riprodurre la dinamica in tempo reale di un modello. Tali problemi possono essere evitati da simulazioni quantistiche delle teorie di gauge su reticolo, le quali stanno diventando sempre più riproducibili sperimentalmente, grazie ai recenti progressi tecnologici. In questa tesi formuliamo una versione delle teorie di Yang-Mills su reticolo appropriata per risolvere il problema della dimensione infinita dello spazio di Hilbert associato ai bosoni di gauge. Questa formulazione è adatta per essere riprodotta in un simulatore quantistico e ne implementiamo una completa simulazione su un computer quantistico digitale, sfruttando il framework Qiskit. In questa simulazione misuriamo le energie del ground state e i valori di aspettazione di alcuni Wilson loop al variare dell'accoppiamento della teoria, per studiarne le fasi e valutare la prestazione dei metodi usati.

Bücher zum Thema "Lattice gauge theories":

1

Rothe, Heinz J. Lattice gauge theories: An introduction. 2. Aufl. Singapore: World Scientific, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rothe, Heinz J. Lattice gauge theories: An introduction. 4. Aufl. Hackensack, N.J: World Scientific, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rothe, Heinz J. Lattice gauge theories: An introduction. Singapore: World Scientific, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

V, Mitrjushkin, Schierholz G und NATO Advanced Research Workshop on Lattice Fermions and Structure of the Vacuum (1999 : Dubna, Chekhovskiĭ raĭon, Russia), Hrsg. Lattice fermions and structure of the vacuum. Dordrecht: Kluwer Academic Publishers, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

DeGrand, T. Lattice methods for quantum chromodynamics. Singapore: World Scientific, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

W, E. Heraeus Seminar (165th 1996 Bad Honnef Germany). Theory of spin lattices and lattice gauge models: Proceedings of the 165th WE-Heraeus-Seminar held at the Physikzentrum, Bad Honnef, Germany, 14-16 October 1996. Berlin: Springer-Verlag, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

DeGrand, T. Lattice methods for quantum chromodynamics. Hackensack, NJ: World Scientific, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

NATO Workshop on Lattice Gauge Theories--A Challenge in Large-Scale Computing (1985 Wuppertal, Germany). Lattice gauge theory: A challenge in large-scale computing. New York: Plenum Press, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Andreas, Frommer, Hrsg. Numerical challenges in lattice quantum chromodynamics: Joint interdisciplinary workshop of John von Neumann Institute for Computing, Jülich, and Institute of Applied Computer Science, Wuppertal University, August 1999. Berlin: Springer, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

NATO Workshop on Lattice Gauge Theories (a Challenge in Large-Scale Computing) (1985 Wuppertal, Germany). Lattice gauge theory: A challenge in large-scale computing : [proceedings of a NATO Workshop on Lattice Gauge Theories, a Challenge in Large-Scale Computing, held November 5-7, 1985, in Wuppertal, Federal Republic of Germany]. New York: Plenum, published in cooperation with NATO Scientific Affairs Division, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Lattice gauge theories":

1

Petronzio, R. „Lattice Gauge Theories“. In XXIV International Conference on High Energy Physics, 136–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74136-4_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wipf, Andreas. „Lattice Gauge Theories“. In Statistical Approach to Quantum Field Theory, 295–331. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33105-3_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Petronzio, Roberto. „Lattice Gauge Theories“. In International Europhysics Conference on High Energy Physics, 269–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59982-8_21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wipf, Andreas. „Lattice Gauge Theories“. In Statistical Approach to Quantum Field Theory, 335–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83263-6_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Golterman, Maarten, und Yigal Shamir. „Lattice Chiral Gauge Theories Through Gauge Fixing“. In Confinement, Topology, and Other Non-Perturbative Aspects of QCD, 165–76. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0502-9_18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Dabringhaus, A., und M. L. Ristig. „The U(1)3 Lattice Gauge Vacuum“. In Condensed Matter Theories, 291–302. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3686-4_24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zinn-Justin, J. „An Introduction to Lattice Gauge Theories“. In Perspectives in Particles and Fields, 15–43. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-0369-6_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Davies, C. T. H. „Fourier Acceleration and Lattice Gauge Theories“. In NATO ASI Series, 63–74. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1909-2_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lüscher, M., und P. Weisz. „On-shell Improved Lattice Gauge Theories“. In Quantum Field Theory, 59–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70307-2_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Irving, A. C. „Hamiltonian Eigenvalues for Lattice Gauge Theories“. In Springer Series in Solid-State Sciences, 140–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-82444-9_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Lattice gauge theories":

1

Petronzio, Roberto. „Lattice gauge theories“. In Proceedings of the XXVI international conference on high energy physics. AIP, 1992. http://dx.doi.org/10.1063/1.43496.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Maas, Axel, und Björn Hendrik Wellegehausen. „G2 gauge theories“. In The 30th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.164.0080.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

GOLTERMAN, MAARTEN, und YIGAL SHAMIR. „LATTICE CHIRAL GAUGE THEORIES THROUGH GAUGE FIXING“. In Proceedings of the 2002 International Workshop. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812795120_0021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Patella, Agostino. „Lattice gauge theories beyond QCD“. In Frontiers of Fundamental Physics 14. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.224.0121.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lau, Richard, und Michael Teper. „SO(2N) and SU(N) gauge theories“. In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0187.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Watanabe, Hiromasa, Masanori Hanada und Goro Ishiki. „Partial deconfinement in gauge theories“. In 37th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.363.0055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Buividovich, P. V. „Entanglement entropy in lattice gauge theories“. In VIIIth Conference Quark Confinement and the Hadron Spectrum. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.077.0039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Burkardt, Matthias. „Gauge field theories on a ⊥ lattice“. In New directions in quantum chromodynamics. AIP, 1999. http://dx.doi.org/10.1063/1.1301666.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Raychowdhury, Indrakshi, und Ramesh Anishetty. „Prepotential Formulation of Lattice Gauge theories“. In The 32nd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.214.0313.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Shamir, Yigal, Thomas DeGrand und Benjamin Svetitsky. „Gauge theories with fermions in two-index representations“. In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0064.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Lattice gauge theories":

1

Hellerman, Simeon. Lattice Gauge Theories Have Gravitational Duals. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/801802.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bodwin, G. T. A lattice formulation of chiral gauge theories. Office of Scientific and Technical Information (OSTI), Dezember 1995. http://dx.doi.org/10.2172/515556.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gelzer, Zechariah John. Lattice Gauge Theories Within and Beyond the Standard Model. Office of Scientific and Technical Information (OSTI), Januar 2017. http://dx.doi.org/10.2172/1416548.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Gadway, Bryce. Dipolar molecule emulator of lattice gauge theories (Final Report). Office of Scientific and Technical Information (OSTI), Januar 2022. http://dx.doi.org/10.2172/1839033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ishikawa, Tomomi, und Taku Izubuchi. Proceedings of RIKEN BNL Research Center Workshop: Lattice Gauge Theories 2016. Office of Scientific and Technical Information (OSTI), Juni 2016. http://dx.doi.org/10.2172/1425134.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie