Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lattice agreement“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lattice agreement" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lattice agreement"
Attiya, Hagit, Maurice Herlihy und Ophir Rachman. „Atomic snapshots using lattice agreement“. Distributed Computing 8, Nr. 3 (März 1995): 121–32. http://dx.doi.org/10.1007/bf02242714.
Der volle Inhalt der QuelleLycett-Brown, Daniel, Ilya Karlin und Kai H. Luo. „Droplet Collision Simulation by a Multi-Speed Lattice Boltzmann Method“. Communications in Computational Physics 9, Nr. 5 (Mai 2011): 1219–34. http://dx.doi.org/10.4208/cicp.311009.091110s.
Der volle Inhalt der QuelleLi, Ning, und Ya-Jie Wu. „Mass spectra of Ds meson from Nf = 2 twisted mass lattice QCD“. Modern Physics Letters A 30, Nr. 11 (02.04.2015): 1550060. http://dx.doi.org/10.1142/s0217732315500601.
Der volle Inhalt der QuelleAKTEKIN, N., Ş. ERKOÇ und M. KALAY. „THE TEST OF THE FINITE-SIZE SCALING RELATIONS FOR THE FIVE-DIMENSIONAL ISING MODEL ON THE CREUTZ CELLULAR AUTOMATON“. International Journal of Modern Physics C 10, Nr. 07 (Oktober 1999): 1237–45. http://dx.doi.org/10.1142/s0129183199001005.
Der volle Inhalt der QuelleKia, Behnam, Sarvenaz Kia, John F. Lindner, Sudeshna Sinha und William L. Ditto. „Coupling Reduces Noise: Applying Dynamical Coupling to Reduce Local White Additive Noise“. International Journal of Bifurcation and Chaos 25, Nr. 03 (März 2015): 1550040. http://dx.doi.org/10.1142/s0218127415500406.
Der volle Inhalt der QuelleMA, J. P. „A STUDY OF GLUON PROPAGATOR ON COARSE LATTICE“. Modern Physics Letters A 15, Nr. 04 (10.02.2000): 229–44. http://dx.doi.org/10.1142/s0217732300000220.
Der volle Inhalt der QuelleKALAY, M., und Z. MERDAN. „THE FINITE-SIZE SCALING STUDY OF THE SPECIFIC HEAT AND THE BINDER PARAMETER FOR THE FIVE-DIMENSIONAL ISING MODEL“. Modern Physics Letters B 21, Nr. 28 (10.12.2007): 1923–31. http://dx.doi.org/10.1142/s0217984907014279.
Der volle Inhalt der QuelleMataev, Muhkametkali, Moldir Abdraimova und A. Atabay. „Synthesis and X-ray analysis of complex ferrite YbBiNaFe2O6,5“. Chemical Bulletin of Kazakh National University, Nr. 2 (30.06.2017): 14–17. http://dx.doi.org/10.15328/cb805.
Der volle Inhalt der QuelleMerdan, Ziya, Mehmet Bayirli und Mustafa Kemal Ozturk. „The Finite-Size Scaling Study of the Specific Heat and the Binder Parameter of the Two-Dimensional Ising Model for the Fractals Obtained by Using the Model of Diffusion-Limited Aggregation“. Zeitschrift für Naturforschung A 64, Nr. 12 (01.12.2009): 849–54. http://dx.doi.org/10.1515/zna-2009-1212.
Der volle Inhalt der QuelleAttiya, Hagit, und Arie Fouren. „Adaptive and Efficient Algorithms for Lattice Agreement and Renaming“. SIAM Journal on Computing 31, Nr. 2 (Januar 2001): 642–64. http://dx.doi.org/10.1137/s0097539700366000.
Der volle Inhalt der QuelleDissertationen zum Thema "Lattice agreement"
Souza, Luciano Freitas de. „Achieving accountability, reconfiguration, randomness, and secret leadership in byzantine fault tolerant distributed systems“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAT043.
Der volle Inhalt der QuelleThis thesis explores three fundamental problems in distributed computing. The first contribution focuses on accountable and reconfigurable distributed systems that detect and respond to component failures. A framework for implementing accountable and reconfigurable replicated services, leveraging the lattice agreement abstraction is presented. The asynchronous implementation ensures any consistency violation is followed by undeniable evidence of misbehavior, enabling seamless system reconfiguration. The second contribution addresses leader election in partially synchronous environments. Homomorphic Sortition, the first SSLE protocol for partially synchronous blockchains is introduced. Using Threshold Fully Homomorphic Encryption (ThFHE), this protocol supports diverse stake distributions and efficient off-chain execution, addressing network instability issues. Additionally, a Secret Leader Permutation (SLP) abstraction to ensure non-repeating leaders in certain blockchains, improving performance and consensus termination is proposed. Finally, the thesis explores randomness generation in distributed systems, focusing on the common coin primitive. Recognizing its impossibility in asynchronous, fault-prone environments, two relaxed versions are introduced: the approximate common coin and the Monte Carlo common coin. These abstractions provide efficient, scalable solutions tolerating up to one-third Byzantine processes without requiring trusted setup or public key infrastructure. Applying our Monte Carlo common coin protocol in binary Byzantine agreement achieves improved communication complexity, setting a new standard. All these contributions advance the robustness, efficiency, and reliability of distributed systems, providing new methods to handle accountability, leader election, and randomness generation in the lack of synchrony
Lippold, Georg. „Encryption schemes and key exchange protocols in the certificateless setting“. Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/41697/1/Georg_Lippold_Thesis.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Lattice agreement"
New Free Trade Agreements in the Asia-Pacific: Towards Lattice Regionalism? Palgrave Macmillan, 2006.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Lattice agreement"
Attiya, Hagit, Maurice Herlihy und Ophir Rachman. „Efficient atomic snapshots using lattice agreement“. In Distributed Algorithms, 35–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-56188-9_3.
Der volle Inhalt der QuelleWang, Jinhua, Ting Chen, Yanyan Liu, Yu Zhou und XinFeng Dong. „Efficient Two-Party Authentication Key Agreement Protocol Using Reconciliation Mechanism from Lattice“. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 32–47. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30623-5_3.
Der volle Inhalt der QuelleGupta, Daya Sagar. „A Mutual Authentication and Key Agreement Protocol for Smart Grid Environment Using Lattice“. In Algorithms for Intelligent Systems, 239–48. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6893-7_22.
Der volle Inhalt der QuelleSingh, Ajeet, Appala Naidu Tentu und K. Gangadhara Rao. „PQS-AKA: Post-Quantum Secure Lightweight Authenticated Lattice-Based Key Agreement for IoT Communications“. In Lecture Notes in Networks and Systems, 503–14. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-97-5703-9_42.
Der volle Inhalt der QuelleAttiya, Hagit, Sweta Kumari, Archit Somani und Jennifer L. Welch. „Store-Collect in the Presence of Continuous Churn with Application to Snapshots and Lattice Agreement“. In Lecture Notes in Computer Science, 1–15. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64348-5_1.
Der volle Inhalt der QuelleCole, Richard, und Peter Becker. „Agreement Contexts in Formal Concept Analysis“. In Concept Lattices, 172–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24651-0_16.
Der volle Inhalt der QuelleRüttgers, Mario, Seong-Ryong Koh, Jenia Jitsev, Wolfgang Schröder und Andreas Lintermann. „Prediction of Acoustic Fields Using a Lattice-Boltzmann Method and Deep Learning“. In Lecture Notes in Computer Science, 81–101. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59851-8_6.
Der volle Inhalt der QuelleDent, Christopher M. „New FTAs in the Asia-Pacific: Towards Lattice Regionalism?“ In New Free Trade Agreements in the Asia-Pacific, 203–59. London: Palgrave Macmillan UK, 2006. http://dx.doi.org/10.1057/9780230627918_4.
Der volle Inhalt der Quellevan Staden, Wynand, und Martin S. Olivier. „Using Purpose Lattices to Facilitate Customisation of Privacy Agreements“. In Trust, Privacy and Security in Digital Business, 201–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74409-2_22.
Der volle Inhalt der QuelleSugiyama, G., und B. J. Alder. „Ground-state properties of metallic lithium“. In Quantum Monte Carlo, 64. Oxford University PressNew York, NY, 2007. http://dx.doi.org/10.1093/oso/9780195310108.003.0067.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lattice agreement"
Ashok, Shreyas, und Juergen Rauleder. „Towards Real-Time Coupled Ship-Rotorcraft Interactional Simulations using GPU-Accelerated Lattice-Boltzmann Method“. In Vertical Flight Society 80th Annual Forum & Technology Display, 1–21. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1346.
Der volle Inhalt der QuelleFalerio, Jose M., Sriram Rajamani, Kaushik Rajan, G. Ramalingam und Kapil Vaswani. „Generalized lattice agreement“. In the 2012 ACM symposium. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2332432.2332458.
Der volle Inhalt der QuelleDi Luna, Giuseppe Antonio, Emmanuelle Anceaume und Leonardo Querzoni. „Byzantine Generalized Lattice Agreement“. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2020. http://dx.doi.org/10.1109/ipdps47924.2020.00075.
Der volle Inhalt der QuelleDi Luna, Giuseppe Antonio, Emmanuelle Anceaume, Silvia Bonomi und Leonardo Querzoni. „Synchronous Byzantine Lattice Agreement in O(log(f) Rounds“. In 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). IEEE, 2020. http://dx.doi.org/10.1109/icdcs47774.2020.00056.
Der volle Inhalt der QuelleAttiya, Hagit, und Arie Fouren. „Adaptive wait-free algorithms for lattice agreement and renaming (extended abstract)“. In the seventeenth annual ACM symposium. New York, New York, USA: ACM Press, 1998. http://dx.doi.org/10.1145/277697.277749.
Der volle Inhalt der QuelleSun, Jinjuan, Jianying Gong, Guojun Li und Tieyu Gao. „Lattice Boltzmann Simulation of Frost Formation Process“. In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17700.
Der volle Inhalt der QuelleLe Targat, Rodolphe, Rafal Gartman, Luca Lorini, Bartlomiej Nagorny, Mikhail Gurov, Pierre Lemonde, Michal Zawada und Jerome Lodewyck. „Comparison of two Strontium optical lattice clocks in agreement at the 10−16 level“. In 2012 IEEE International Frequency Control Symposium (FCS). IEEE, 2012. http://dx.doi.org/10.1109/fcs.2012.6243652.
Der volle Inhalt der QuelleAttiya, Hagit, Sweta Kumari, Archit Somani und Jennifer L. Welch. „Brief Announcement: Collect in the Presence of Continuous Churn with Application to Snapshots and Lattice Agreement“. In PODC '20: ACM Symposium on Principles of Distributed Computing. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3382734.3405709.
Der volle Inhalt der QuelleLe Targat, Rodolphe, Luca Lorini, Mikhail Gurov, Michal Zawada, Rafal Gartman, Bartlomiej Nagorny, Pierre Lemonde und Jerome Lodewyck. „Comparison of two Strontium optical lattice clocks in agreement at the 10−16 level“. In 2012 European Frequency and Time Forum (EFTF). IEEE, 2012. http://dx.doi.org/10.1109/eftf.2012.6502324.
Der volle Inhalt der QuelleBo¨hle, Martin, und Richard Becker. „Verification of a Lattice-Boltzmann Method by Using Analytical Flow Solutions of Standard Flow Problems“. In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78342.
Der volle Inhalt der Quelle