Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lateral heterostructures“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lateral heterostructures" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lateral heterostructures"
Guha, Puspendu, Joon Young Park, Janghyun Jo, Yunyeong Chang, Hyeonhu Bae, Rajendra Kumar Saroj, Hoonkyung Lee, Miyoung Kim und Gyu-Chul Yi. „Molecular beam epitaxial growth of Sb2Te3–Bi2Te3 lateral heterostructures“. 2D Materials 9, Nr. 2 (31.01.2022): 025006. http://dx.doi.org/10.1088/2053-1583/ac421a.
Der volle Inhalt der QuelleZhang, Jianzhi, Hongfu Huang, Junhao Peng, Chuyu Li, Huafeng Dong, Sifan Kong, Yiyuan Xie, Runqian Wu, Minru Wen und Fugen Wu. „A Cost-Effective Long-Wave Infrared Detector Material Based on Graphene@PtSe2/HfSe2 Bidirectional Heterostructure: A First-Principles Study“. Crystals 12, Nr. 9 (02.09.2022): 1244. http://dx.doi.org/10.3390/cryst12091244.
Der volle Inhalt der QuelleWan, Li-Kai, Yi-Xuan Xue, Jin-Wu Jiang und Harold S. Park. „Machine learning accelerated search of the strongest graphene/h-BN interface with designed fracture properties“. Journal of Applied Physics 133, Nr. 2 (14.01.2023): 024302. http://dx.doi.org/10.1063/5.0131576.
Der volle Inhalt der QuelleLiu, Xiaolong, und Mark C. Hersam. „Borophene-graphene heterostructures“. Science Advances 5, Nr. 10 (Oktober 2019): eaax6444. http://dx.doi.org/10.1126/sciadv.aax6444.
Der volle Inhalt der QuelleМалевская, А. В., Н. Д. Ильинская und В. М. Андреев. „Разработка методов жидкостного травления разделительной меза-структуры при создании каскадных солнечных элементов“. Письма в журнал технической физики 45, Nr. 24 (2019): 14. http://dx.doi.org/10.21883/pjtf.2019.24.48795.17953.
Der volle Inhalt der QuelleДавыдов, С. Ю. „Простые модели латеральных гетероструктур“. Физика твердого тела 60, Nr. 7 (2018): 1389. http://dx.doi.org/10.21883/ftt.2018.07.46129.015.
Der volle Inhalt der QuelleLi, Xufan, Ming-Wei Lin, Junhao Lin, Bing Huang, Alexander A. Puretzky, Cheng Ma, Kai Wang et al. „Two-dimensional GaSe/MoSe2misfit bilayer heterojunctions by van der Waals epitaxy“. Science Advances 2, Nr. 4 (April 2016): e1501882. http://dx.doi.org/10.1126/sciadv.1501882.
Der volle Inhalt der QuelleDavydov, S. Yu. „Simple Models of Lateral Heterostructures“. Physics of the Solid State 60, Nr. 7 (Juli 2018): 1405–12. http://dx.doi.org/10.1134/s1063783418070089.
Der volle Inhalt der QuelleWang, Zixuan, Wenshuo Xu, Benxuan Li, Qiaoyan Hao, Di Wu, Dianyu Qi, Haibo Gan, Junpeng Xie, Guo Hong und Wenjing Zhang. „Selective Chemical Vapor Deposition Growth of WS2/MoS2 Vertical and Lateral Heterostructures on Gold Foils“. Nanomaterials 12, Nr. 10 (16.05.2022): 1696. http://dx.doi.org/10.3390/nano12101696.
Der volle Inhalt der QuelleAlharbi, Safia Abdullah R., Kazi Jannatul Tasnim und Ming Yu. „The first-principles study of structural and electronic properties of two-dimensional SiC/GeC lateral polar heterostructures“. Journal of Applied Physics 132, Nr. 18 (14.11.2022): 184301. http://dx.doi.org/10.1063/5.0127579.
Der volle Inhalt der QuelleDissertationen zum Thema "Lateral heterostructures"
Vallis, Stuart Lawrie. „Lateral and longitudinal surface superlattices on shallow GaAs heterostructures“. Thesis, University of Glasgow, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320844.
Der volle Inhalt der QuelleLai, Andrew P. (Andrew Pan). „Investigation of lateral gated quantum devices in Si/SiGe heterostructures“. Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/83775.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 73-75).
Quantum dots in Si/SiGe have long spin decoherence times, due to the low density of nuclear spins and weak coupling between nuclear and electronic spins. Because of this, they are excellent candidates for use as solid state qubits. The initial approach towards creating controllable Si/SiGe quantum dots was to fabricate them in delta doped heterostructures. We provide evidence that the delta doping layer in these heterostructures provides a parallel conduction path, which prevents one from creating controllable quantum dots. Instead, it may be more favorable to supply electrons in the 2DEG through capactive gating, instead of a delta doping layer. We therefore discuss efforts to fabricate Si/SiGe quantum dots from undoped heterostructures and the difficulties encountered. A new method for fabricating ohmics in undoped heterostructures is discussed. We also discuss parallel conduction which occurs in the Si cap layer of these undoped heterostructures, which appears to be a major obstacle towards achieving workable devices in undoped Si/SiGe heterostructures.
by Andrew P. Lai.
S.M.
Deborde, Jean-Laurent. „Lateral electron tunneling spectroscopy between low-dimensional electron systems in GaAs,AlGaAs heterostructures“. Tönning Lübeck Marburg Der Andere Verl, 2009. http://d-nb.info/995773491/04.
Der volle Inhalt der QuelleMaharjan, Nikesh. „Electronic band engineering of Transition metal dichalcogenides: First Principles Calculation“. OpenSIUC, 2015. https://opensiuc.lib.siu.edu/theses/1661.
Der volle Inhalt der QuelleGraf, Davy. „Electrons in reduced dimensions : from finite lateral superlattices in AlGaAs heterostructures to few-layer graphene /“. Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17241.
Der volle Inhalt der QuelleBradford, Jonathan. „Growth and characterisation of two-dimensional materials and their heterostructures on sic“. Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134400/1/Jonathan_Bradford_Thesis.pdf.
Der volle Inhalt der QuelleSerrano, richaud Elisa. „Modelling electronic and optical properties of 2D heterostructures“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP121.
Der volle Inhalt der QuelleGraphene (Gr) and hexagonal boron nitride (hBN) have a similar lattice parameter (~1.5% mismatch) and different properties , Gr is a metal known by its high conductivity and hBN is a large gap insulator ~6eV) with a strong UV emission. Due to these two remarks, they are perfect candidates to be stacked side-by-side in a lateral heterostructures instead of one of the top of the other in a more common vertical heterostructure. In this thesis I will be interested at modelling the electronic and optical properties of lateral heterostructures composed of successive armchair graphene and boron nitride nanoribbons (AGBN). However, during the synthesis of this kind of heterostructures defects, such as roughness or non-hexagonal defect, may appear at the interface affecting to the properties of AGBN.In the first part of the thesis, will combine ab-initio techniques such a density functional theory (DFT) and a perturbative tight-binding (TB) modem to study the opposite and complementary sensitivity of the gapwidth of isolated Gr and hBN armchair nanoribbons (AGNR and ABNNR) upon different stimuli.In the next parts I will present the electronic structure of AGBN carry out with DFT and optical spec-trum calculated by GW and the Bethe-Salpeter equation (BSE). I will revise from the general features, like the band structure, to explaining in detail the role of each material and the characteristic confining of the exciton in the Gr part of the heterostructures.Parallel to this study, I will parametrise a semi-empirical TB model and set its limits of validity to de-scribe the absorption spectrum of AGBN in the independent-particle approximation. Therefore, I have to set a correspondence between excitonic peaks on the BSE absorption spectra and transitions in IP spec-tra will allow us to estimate excitonic effects from the TB IP spectra. In particular, this approach will be used in the last part of the thesis to finally characterise the impact of weak roughness at the interface or non-hexagonal defects like Stone-Wales or divacancies
Soucail, Bernard. „Contributions a l'etude des changements de dimensionnalite induits par des champs exterieurs ou par un confinement lateral dans les heterostructures de semiconducteurs iii-v“. Paris 6, 1990. http://www.theses.fr/1990PA066693.
Der volle Inhalt der QuelleLee, Sunyoung. „Distributed effects in power transistors and the optimization of the layouts of AlGaN/GaN HFETs“. Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1149095133.
Der volle Inhalt der QuellePiotrowicz, Pawel Jan Andrzej. „Fabrication and measurement of laterally confined double barrier heterostructures with wide wells“. Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627421.
Der volle Inhalt der QuelleBücher zum Thema "Lateral heterostructures"
Horing, Norman J. Morgenstern. Retarded Green’s Functions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0005.
Der volle Inhalt der QuelleBuchteile zum Thema "Lateral heterostructures"
Lima, A. P., C. Miskys, O. Ambacher, M. Stutzmann, R. Dimitrov, V. Tilak, M. J. Murphy und L. F. Eastman. „AlGaN/GaN lateral polarity heterostructures“. In Springer Proceedings in Physics, 303–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_139.
Der volle Inhalt der QuelleWu, Yuh-Renn, Madhusudan Singh und Jasprit Singh. „Lateral and Vertical Charge Transport in Polar Nitride Heterostructures“. In Polarization Effects in Semiconductors, 111–59. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68319-5_3.
Der volle Inhalt der QuelleJeschke, Sabina, Olivier Pfeiffer, Joerg Schulze und Marc Wilke. „Crystalline Ge1−x Sn x Heterostructures in Lateral High-Speed Devices“. In Automation, Communication and Cybernetics in Science and Engineering 2009/2010, 597–608. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16208-4_52.
Der volle Inhalt der QuelleKurtz, E., M. Schmidt, B. Dal Don, S. Wachter, D. Litvinov, D. Gerthsen, H. Kalt und C. Klingshirn. „Properties of CdSe/ZnSe based quantum heterostructures with and without lateral confinement potentials“. In Springer Proceedings in Physics, 391–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_181.
Der volle Inhalt der QuelleHeinecke, Harald. „Concepts for Lateral III–V Heterostructures Fabricated by Surface Selective Growth in MOMBE“. In Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates, 229–42. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0341-1_21.
Der volle Inhalt der QuelleZytkiewicz, Z. R., und D. Dobosz. „Influence of Si Doping on Epitaxial Lateral Overgrowth of GaAs“. In Heterostructure Epitaxy and Devices — HEAD’97, 71–74. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5012-5_9.
Der volle Inhalt der QuelleMimila-Arroyo, J., und K. Somogyi. „Optical Gain Improvement of GaAs Lateral Photoresistive Elements by Sulphur Passivation of the Surface“. In Heterostructure Epitaxy and Devices — HEAD’97, 251–54. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5012-5_48.
Der volle Inhalt der QuelleBrinkop, F., C. Dahl, J. P. Kotthaus, G. Weimann und W. Schlapp. „Microwave Conductivity of Laterally Confined Electron Systems in AlGaAs/GaAs Heterostructures“. In Springer Series in Solid-State Sciences, 352–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84408-9_51.
Der volle Inhalt der QuelleBakhtatou, Ali, und Ali Hamidani. „Design of a New Photo-Diode Based on (α-PbO)/(α-SnO) Lateral Heterostructure“. In Springer Proceedings in Materials, 133–41. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1916-7_14.
Der volle Inhalt der QuelleTagawa, Tomoya, und Shin-ichi Katayama. „Plasmons in laterally density modulated 2D electron gas in shallow etched single-heterostructures“. In Springer Proceedings in Physics, 481–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_225.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lateral heterostructures"
Zhong, Yutong, Hanyuan Ma, Qian Lv, Yongzhuo Li, Jiabin Feng, Chen Li, Jialu Xu, Chenxin Yu, Ruitao Lv und Cun-Zheng Ning. „Low-voltage Injection-free Electroluminescence Device based on a Monolayer MoSe2/WSe2 Lateral Heterostructure“. In CLEO: Science and Innovations, SF2R.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sf2r.5.
Der volle Inhalt der QuelleMalhotra, Yakshita, Yifan Shen, Yuanpeng Wu, Josey Hanish, Yifu Guo, Yixin Xiao, Kai Sun, Theodore Norris und Zetian Mi. „Carrier Transfer From C-Plane to Semipolar-Plane Regions in a Red-Emitting InGaN/GaN Heterostructure“. In CLEO: Applications and Technology, JTu2A.126. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.126.
Der volle Inhalt der QuelleTaghinejad, Hossein, und Ali Adibi. „Ultra-miniaturized lateral heterostructures in 2D semiconductors“. In Active Photonic Platforms XIII, herausgegeben von Ganapathi S. Subramania und Stavroula Foteinopoulou. SPIE, 2021. http://dx.doi.org/10.1117/12.2593849.
Der volle Inhalt der QuelleMarian, D., E. Dib, T. Cusati, A. Fortunelli, G. Iannaccone und G. Fiori. „Two-dimensional transistors based on MoS2 lateral heterostructures“. In 2016 IEEE International Electron Devices Meeting (IEDM). IEEE, 2016. http://dx.doi.org/10.1109/iedm.2016.7838413.
Der volle Inhalt der QuelleVoronine, Dmitri V., und Sharad Ambardar. „Nanophotonics of coupled emitters in atomically thin lateral heterostructures“. In Active Photonic Platforms XII, herausgegeben von Ganapathi S. Subramania und Stavroula Foteinopoulou. SPIE, 2020. http://dx.doi.org/10.1117/12.2569073.
Der volle Inhalt der QuelleJeschke, Sabina, Olivier Pfeiffer, Joerg Schulze und Marc Wilke. „Crystalline Ge1-xSnx Heterostructures in Lateral High-Speed Devices“. In 2010 Fourth International Conference on Quantum, Nano and Micro Technologies (ICQNM). IEEE, 2010. http://dx.doi.org/10.1109/icqnm.2010.17.
Der volle Inhalt der QuelleFontein, P. F., P. Hendriks, J. Wolter, A. Kucernak, R. Peat und D. E. Williams. „Topography Of GaAs/AlgaAs Heterostructures Using The Lateral Photo Effect“. In 1988 International Congress on Optical Science and Engineering. SPIE, 1989. http://dx.doi.org/10.1117/12.950344.
Der volle Inhalt der QuelleHorst, S., S. W. Koch, G. Blume, G. Weiser, W. Ruhle, S. R. Johnson, J. B. Wang et al. „Strong Lateral Confinement in Ga(AsSb)/GaAs/(AlGa)As Heterostructures“. In CLEO '07. 2007 Conference on Lasers and Electro-Optics. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452599.
Der volle Inhalt der QuelleOlbrich, P., R. Ravash, T. Feil, S. D. Danilov, J. Allerdings, D. Weiss, E. L. Ivchenko und S. D. Ganichev. „Terahertz photocurrents in heterostructures with one-dimensional lateral periodic potential“. In 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2008). IEEE, 2008. http://dx.doi.org/10.1109/icimw.2008.4665696.
Der volle Inhalt der QuelleKobayashi, Y., T. Saito, H. Tokuda und M. Kuzuhara. „Electrical charaterization of lateral tunnel junctions fabricated on AlGaN/GaN heterostructures“. In 2013 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK). IEEE, 2013. http://dx.doi.org/10.1109/imfedk.2013.6602242.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Lateral heterostructures"
Tsui, D. C. Electronic Processes in Heterostructures, Strained-Layer Materials, and Laterally Patterned Structures. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada294970.
Der volle Inhalt der Quelle