Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Late functionalization.

Zeitschriftenartikel zum Thema „Late functionalization“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Late functionalization" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Börgel, Jonas, und Tobias Ritter. „Late-Stage Functionalization“. Chem 6, Nr. 8 (August 2020): 1877–87. http://dx.doi.org/10.1016/j.chempr.2020.07.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

McConnell, Cameron R., und Shih-Yuan Liu. „Late-stage functionalization of BN-heterocycles“. Chemical Society Reviews 48, Nr. 13 (2019): 3436–53. http://dx.doi.org/10.1039/c9cs00218a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bellina, Fabio. „Late-stage Functionalization of (hetero)arenes“. Current Organic Chemistry 25, Nr. 18 (22.10.2021): 2045. http://dx.doi.org/10.2174/138527282518211007142734.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Miller, Scott J., und Tobias Ritter. „Introduction: Remote and Late Stage Functionalization“. Chemical Reviews 123, Nr. 24 (27.12.2023): 13867–68. http://dx.doi.org/10.1021/acs.chemrev.3c00800.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kumar Hota, Sudhir, Dilsha Jinan, Satya Prakash Panda, Rittwika Pan, Basudev Sahoo und Sandip Murarka. „Organophotoredox‐Catalyzed Late‐Stage Functionalization of Heterocycles“. Asian Journal of Organic Chemistry 10, Nr. 8 (07.06.2021): 1848–60. http://dx.doi.org/10.1002/ajoc.202100234.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Cernak, Tim, Kevin D. Dykstra, Sriram Tyagarajan, Petr Vachal und Shane W. Krska. „The medicinal chemist's toolbox for late stage functionalization of drug-like molecules“. Chemical Society Reviews 45, Nr. 3 (2016): 546–76. http://dx.doi.org/10.1039/c5cs00628g.

Der volle Inhalt der Quelle
Annotation:
The advent of modern C–H functionalization chemistries has enabled medicinal chemists to consider a synthetic strategy, late stage functionalization (LSF), which utilizes the C–H bonds of drug leads as points of diversification for generating new analogs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Son, Jongwoo. „Sustainable manganese catalysis for late-stage C–H functionalization of bioactive structural motifs“. Beilstein Journal of Organic Chemistry 17 (26.07.2021): 1733–51. http://dx.doi.org/10.3762/bjoc.17.122.

Der volle Inhalt der Quelle
Annotation:
The late-stage C–H functionalization of bioactive structural motifs is a powerful synthetic strategy for accessing advanced agrochemicals, bioimaging materials, and drug candidates, among other complex molecules. While traditional late-stage diversification relies on the use of precious transition metals, the utilization of 3d transition metals is an emerging approach in organic synthesis. Among the 3d metals, manganese catalysts have gained increasing attention for late-stage diversification due to the sustainability, cost-effectiveness, ease of operation, and reduced toxicity. Herein, we summarize recent manganese-catalyzed late-stage C–H functionalization reactions of biologically active small molecules and complex peptides.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Barham, Joshua P., und Jaspreet Kaur. „Site-Selective C(sp3)–H Functionalizations Mediated by Hydrogen Atom Transfer Reactions via α-Amino/α-Amido Radicals“. Synthesis 54, Nr. 06 (25.10.2021): 1461–77. http://dx.doi.org/10.1055/a-1677-6619.

Der volle Inhalt der Quelle
Annotation:
AbstractAmines and amides, as N-containing compounds, are ubiquitous in pharmaceutically-active scaffolds, natural products, agrochemicals, and peptides. Amides in nature bear a key responsibility for imparting three-dimensional structure, such as in proteins. Structural modifications to amines and amides, especially at their positions α to N, bring about profound changes in biological activity oftentimes leading to more desirable pharmacological profiles of small drug molecules. A number of recent developments in synthetic methodology for the functionalizations of amines and amides omit the need of their directing groups or pre-functionalizations, achieving direct activation of the otherwise relatively benign C(sp3)–H bonds α to N. Among these, hydrogen atom transfer (HAT) has proven a very powerful platform for the selective activation of amines and amides to their α-amino and α-amido radicals, which can then be employed to furnish C–C and C–X (X = heteroatom) bonds. The abilities to both form these radicals and control their reactivity in a site-selective manner is of utmost importance for such chemistries to witness applications in late-stage functionalization. Therefore, this review captures contemporary HAT strategies to realize chemo- and regioselective amine and amide α-C(sp3)–H functionalization, based on bond strengths, bond polarities, reversible HAT equilibria, traceless electrostatic-directing auxiliaries, and steric effects of in situ-generated HAT agents.1 Introduction2 Functionalizations of Amines3 Functionalizations of Carbamates4 Functionalizations of Amides5 Conclusion
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Greaney, Michael F., und David M. Whalley. „Recent Advances in the Smiles Rearrangement: New Opportunities for Arylation“. Synthesis 54, Nr. 08 (01.12.2021): 1908–18. http://dx.doi.org/10.1055/a-1710-6289.

Der volle Inhalt der Quelle
Annotation:
AbstractThe Smiles rearrangement has undergone a renaissance in recent years providing new avenues for non-canonical arylation techniques in both the radical and polar regimes. This short review will discuss recent applications of the reaction (from 2017 to late 2021), including its relevance to areas such as heterocycle synthesis and the functionalization of alkenes and alkynes as well as glimpses at new directions for the field.1 Introduction2 Polar Smiles Rearrangements3 Radical Smiles: Alkene and Alkyne Functionalization4 Radical Smiles: Rearrangements via C–X Bond Cleavage5 Radical Smiles: Miscellaneous Rearrangements6 Conclusions
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Liu, Zilei, Jie Li, Suhua Li, Gencheng Li, K. Barry Sharpless und Peng Wu. „SuFEx Click Chemistry Enabled Late-Stage Drug Functionalization“. Journal of the American Chemical Society 140, Nr. 8 (16.02.2018): 2919–25. http://dx.doi.org/10.1021/jacs.7b12788.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

White, M. Christina, und Jinpeng Zhao. „Aliphatic C–H Oxidations for Late-Stage Functionalization“. Journal of the American Chemical Society 140, Nr. 43 (05.09.2018): 13988–4009. http://dx.doi.org/10.1021/jacs.8b05195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Noisier, Anaïs F. M., Magnus J. Johansson, Laurent Knerr, Martin A. Hayes, William J. Drury, Eric Valeur, Lara R. Malins und Ranganath Gopalakrishnan. „Late‐Stage Functionalization of Histidine in Unprotected Peptides“. Angewandte Chemie International Edition 58, Nr. 52 (19.12.2019): 19096–102. http://dx.doi.org/10.1002/anie.201910888.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Noisier, Anaïs F. M., Magnus J. Johansson, Laurent Knerr, Martin A. Hayes, William J. Drury, Eric Valeur, Lara R. Malins und Ranganath Gopalakrishnan. „Late‐Stage Functionalization of Histidine in Unprotected Peptides“. Angewandte Chemie 131, Nr. 52 (07.11.2019): 19272–78. http://dx.doi.org/10.1002/ange.201910888.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Čorić, Ilija, und Jyoti Dhankhar. „Introduction to Spatial Anion Control for Direct C–H Arylation“. Synlett 33, Nr. 06 (01.02.2022): 503–12. http://dx.doi.org/10.1055/s-0040-1719860.

Der volle Inhalt der Quelle
Annotation:
AbstractC–H activation of functionally rich molecules without the need for directing groups promises shorter organic syntheses and late-stage diversification of molecules for drug discovery. We highlight recent examples of palladium-catalyzed nondirected functionalization of C–H bonds in arenes as limiting substrates with a focus on the development of the concept of spatial anion control for direct C–H arylation.1 C–H Activation and the CMD Mechanism2 Nondirected C–H Functionalizations of Arenes as Limiting Substrates3 Nondirected C–H Arylation4 Spatial Anion Control for Direct C–H Arylation5 Coordination Chemistry with Spatial Anion Control6 Conclusion
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Budhwan, Rajnish, Suman Yadav und Sandip Murarka. „Late stage functionalization of heterocycles using hypervalent iodine(iii) reagents“. Organic & Biomolecular Chemistry 17, Nr. 26 (2019): 6326–41. http://dx.doi.org/10.1039/c9ob00694j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Greunke, Christian, Janine Antosch und Tobias A. M. Gulder. „Promiscuous hydroxylases for the functionalization of polycyclic tetramate macrolactams – conversion of ikarugamycin to butremycin“. Chemical Communications 51, Nr. 25 (2015): 5334–36. http://dx.doi.org/10.1039/c5cc00843c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Zhang, Sikun, Xiaodong Yang, Xu Liu, Letian Xu, Bin Rao, Ni Yan und Gang He. „Dithienoazaborine derivatives with selective π-conjugated extension via late-stage functionalization“. Journal of Materials Chemistry C 9, Nr. 11 (2021): 4053–61. http://dx.doi.org/10.1039/d0tc05640e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Zheng, Shasha, Gu Lingyue, Michelle Jui Hsien Ong, Denis Jacquemin, Anthony Romieu, Jean-Alexandre Richard und Rajavel Srinivasan. „Divergent synthesis of 5′,7′-difluorinated dihydroxanthene-hemicyanine fused near-infrared fluorophores“. Organic & Biomolecular Chemistry 17, Nr. 17 (2019): 4291–300. http://dx.doi.org/10.1039/c9ob00568d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Capaldo, Luca, Lorenzo Lafayette Quadri und Davide Ravelli. „Photocatalytic hydrogen atom transfer: the philosopher's stone for late-stage functionalization?“ Green Chemistry 22, Nr. 11 (2020): 3376–96. http://dx.doi.org/10.1039/d0gc01035a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Guo, Shuo, Deyaa I. AbuSalim und Silas P. Cook. „Aqueous Benzylic C–H Trifluoromethylation for Late-Stage Functionalization“. Journal of the American Chemical Society 140, Nr. 39 (24.09.2018): 12378–82. http://dx.doi.org/10.1021/jacs.8b08547.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Shang, Ming, Ming-Ming Wang, Tyler G. Saint-Denis, Ming-Hong Li, Hui-Xiong Dai und Jin-Quan Yu. „Copper-Mediated Late-Stage Functionalization of Heterocycle-Containing Molecules“. Angewandte Chemie International Edition 56, Nr. 19 (10.04.2017): 5317–21. http://dx.doi.org/10.1002/anie.201611287.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Shang, Ming, Ming-Ming Wang, Tyler G. Saint-Denis, Ming-Hong Li, Hui-Xiong Dai und Jin-Quan Yu. „Copper-Mediated Late-Stage Functionalization of Heterocycle-Containing Molecules“. Angewandte Chemie 129, Nr. 19 (10.04.2017): 5401–5. http://dx.doi.org/10.1002/ange.201611287.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Konrad, David B., James A. Frank und Dirk Trauner. „Synthesis of Redshifted Azobenzene Photoswitches by Late-Stage Functionalization“. Chemistry - A European Journal 22, Nr. 13 (17.02.2016): 4364–68. http://dx.doi.org/10.1002/chem.201505061.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Kuttruff, Christian A., Margit Haile, Johannes Kraml und Christofer S. Tautermann. „Late-Stage Functionalization of Drug-Like Molecules Using Diversinates“. ChemMedChem 13, Nr. 10 (23.04.2018): 983–87. http://dx.doi.org/10.1002/cmdc.201800151.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Zhan, Bei-Bei, Meng-Xue Jiang und Bing-Feng Shi. „Late-stage functionalization of peptides via a palladium-catalyzed C(sp3)–H activation strategy“. Chemical Communications 56, Nr. 90 (2020): 13950–58. http://dx.doi.org/10.1039/d0cc06133f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Chen, Geshuyi, Zhe Chang, Pei Yuan, Si Wang, Yongxiu Yang, Xiaolei Liang und Depeng Zhao. „Late-stage functionalization of 5-nitrofurans derivatives and their antibacterial activities“. RSC Advances 13, Nr. 5 (2023): 3204–9. http://dx.doi.org/10.1039/d2ra07676d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Lv, Shuaipeng, Haitao Liu, Jie Kang, Yun Luo, Ting Gong, Zhengqi Dong, Guibo Sun, Chunnian He, Xiaobo Sun und Lei Wang. „Palladium-catalyzed enol/enolate directed oxidative annulation: functionalized naphthofuroquinone synthesis and bioactivity evaluation“. Chemical Communications 55, Nr. 98 (2019): 14729–32. http://dx.doi.org/10.1039/c9cc05233j.

Der volle Inhalt der Quelle
Annotation:
Diverse naphthoquinone-containing heterocycle synthesis has been developed via enol/enolate-directed palladium catalytic processes together with late-stage functionalization and lead compound development.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Arisawa, Mitsuhiro, Shohei Ohno, Makoto Miyoshi und Kenichi Murai. „Non-Directed β- or γ-C(sp3)–H Functionalization of Saturated Nitrogen-Containing Heterocycles“. Synthesis 53, Nr. 17 (15.04.2021): 2947–60. http://dx.doi.org/10.1055/a-1483-4575.

Der volle Inhalt der Quelle
Annotation:
AbstractReactions that take place via C–H functionalization are valuable tools in organic synthesis because they can be used for the synthesis of target compounds and for the late-stage functionalization of bioactive compounds. Among these, non-directed C(sp3)–H functionalization reactions of saturated nitrogen-containing heterocycles have been developed in recent years. However, most of these lead to functionalization at the α-position relative to the heteroatom, and reactions at the β- or γ-positions are limited since these bonds are stronger and less electron-rich. Hence, in this review, we will discuss non-directed β- or γ-C(sp3)–H functionalization reactions of saturated nitrogen-containing heterocycles, which are of recent interest to medicinal chemists. These methods are attractive in order to avoid the pre-functionalization of substrates, and to reduce the number of synthetic steps and the formation of byproducts. Such non-directed β- and γ-C(sp3)–H functionalization reactions can be divided into enamine-intermediate-mediated processes and other reaction types described in this review. 1 Introduction2 Non-Directed β-C(sp3)–H Functionalization of Saturated Nitrogen­-Containing Heterocycles via an Enamine Intermediate2.1 Non-Directed β-C(sp3)–H Functionalization of Saturated Nitrogen­-Containing Heterocycles under Acidic, Basic or Thermal Conditions2.2 Non-Directed β-C(sp3)–H Functionalization of Saturated Nitrogen­-Containing Heterocycles under Oxidative Conditions2.3 Non-Directed β-C(sp3)–H Functionalization of Saturated Nitrogen­-Containing Heterocycles under Redox-Neutral Conditions3 Strategies for Non-Directed β- or γ-C(sp3)–H Functionalization of Saturated Heterocycles Excluding Examples Proceeding via an Enamine Intermediate 4 Summary
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Cernak, Tim, Kevin D. Dykstra, Sriram Tyagarajan, Petr Vachal und Shane W. Krska. „Correction: The medicinal chemist's toolbox for late stage functionalization of drug-like molecules“. Chemical Society Reviews 46, Nr. 6 (2017): 1760. http://dx.doi.org/10.1039/c7cs90023f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

da Silva, Thiago Sabino, Matheus da Silva Souza, Adriano Defini Andricopulo und Fernando Coelho. „Discovery of indolizine lactones as anticancer agents and their optimization through late-stage functionalization“. RSC Advances 13, Nr. 29 (2023): 20264–70. http://dx.doi.org/10.1039/d3ra03395c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Li, Wei, Zhoulong Fan, Kaijun Geng, Youjun Xu und Ao Zhang. „Late-stage diversification of biologically active pyridazinones via a direct C–H functionalization strategy“. Organic & Biomolecular Chemistry 13, Nr. 2 (2015): 539–48. http://dx.doi.org/10.1039/c4ob02061h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Adarsh Krishna, T. P., Baldev Edachery und Sunil Athalathil. „Bakuchiol – a natural meroterpenoid: structure, isolation, synthesis and functionalization approaches“. RSC Advances 12, Nr. 14 (2022): 8815–32. http://dx.doi.org/10.1039/d1ra08771a.

Der volle Inhalt der Quelle
Annotation:
The isolation methods, various chemical routes and late-stage functionalization approaches and structure–activity relationships of bakuchiol – a meroterpene class of natural product has been discussed in detail.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Tali, Javeed Ahmad, Gulshan Kumar, Davinder Singh und Ravi Shankar. „Palladium(ii) catalyzed site-selective C–H olefination of imidazo[1,2-a]pyridines“. Organic & Biomolecular Chemistry 19, Nr. 43 (2021): 9401–6. http://dx.doi.org/10.1039/d1ob01683k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Hjerrild, Per, Thomas Tørring und Thomas B. Poulsen. „Dehydration reactions in polyfunctional natural products“. Natural Product Reports 37, Nr. 8 (2020): 1043–64. http://dx.doi.org/10.1039/d0np00009d.

Der volle Inhalt der Quelle
Annotation:
Here, we review methods for chemical dehydration of alcohols to alkenes and discuss the potential of late-stage functionalization by direct, site- and chemo-selective dehydration of complex molecular substrates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Cao, Hui, Qiang Cheng und Armido Studer. „Radical and ionic meta -C–H functionalization of pyridines, quinolines, and isoquinolines“. Science 378, Nr. 6621 (18.11.2022): 779–85. http://dx.doi.org/10.1126/science.ade6029.

Der volle Inhalt der Quelle
Annotation:
Carbon-hydrogen (C−H) functionalization of pyridines is a powerful tool for the rapid construction and derivatization of many agrochemicals, pharmaceuticals, and materials. Because of the inherent electronic properties of pyridines, selective meta -C−H functionalization is challenging. Here, we present a protocol for highly regioselective meta -C−H trifluoromethylation, perfluoroalkylation, chlorination, bromination, iodination, nitration, sulfanylation, and selenylation of pyridines through a redox-neutral dearomatization-rearomatization process. The introduced dearomative activation mode provides a diversification platform for meta-selective reactions on pyridines and other azaarenes through radical as well as ionic pathways. The broad scope and high selectivity of these catalyst-free reactions render these processes applicable for late-stage functionalization of drugs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Chen, Hao, Runyu Mao, Martin Brzozowski, Nghi H. Nguyen und Brad E. Sleebs. „Late Stage Phosphotyrosine Mimetic Functionalization of Peptides Employing Metallaphotoredox Catalysis“. Organic Letters 23, Nr. 11 (24.05.2021): 4244–49. http://dx.doi.org/10.1021/acs.orglett.1c01200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Shetgaonkar, Samata E., und Fateh V. Singh. „Hypervalent iodine-mediated synthesis and late-stage functionalization of heterocycles“. Arkivoc 2020, Nr. 4 (08.04.2021): 86–161. http://dx.doi.org/10.24820/ark.5550190.p011.418.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Nagasawa, Shota. „Direct Aromatic C-H Oxygenation Aspiring to Late-stage Functionalization“. Journal of Synthetic Organic Chemistry, Japan 80, Nr. 4 (01.04.2022): 377–78. http://dx.doi.org/10.5059/yukigoseikyokaishi.80.377.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Zhang, Li, und Tobias Ritter. „A Perspective on Late-Stage Aromatic C–H Bond Functionalization“. Journal of the American Chemical Society 144, Nr. 6 (27.01.2022): 2399–414. http://dx.doi.org/10.1021/jacs.1c10783.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Moir, Michael, Jonathan J. Danon, Tristan A. Reekie und Michael Kassiou. „An overview of late-stage functionalization in today’s drug discovery“. Expert Opinion on Drug Discovery 14, Nr. 11 (14.08.2019): 1137–49. http://dx.doi.org/10.1080/17460441.2019.1653850.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Kelly, Christopher B., und Rosaura Padilla-Salinas. „Late stage C–H functionalization via chalcogen and pnictogen salts“. Chemical Science 11, Nr. 37 (2020): 10047–60. http://dx.doi.org/10.1039/d0sc03833d.

Der volle Inhalt der Quelle
Annotation:
Three unrelated cationic groups, which can replace C–H bonds late stage, have been identified as progenitors to various functional groups. This review discusses the chemistry of these salts and their potential application in medicinal chemistry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Leroux, Marcel, Thomas Vorherr, Ian Lewis, Michael Schaefer, Guido Koch, Konstantin Karaghiosoff und Paul Knochel. „Late‐Stage Functionalization of Peptides and Cyclopeptides Using Organozinc Reagents“. Angewandte Chemie International Edition 58, Nr. 24 (11.06.2019): 8231–34. http://dx.doi.org/10.1002/anie.201902454.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

DiRocco, Daniel A., Kevin Dykstra, Shane Krska, Petr Vachal, Donald V. Conway und Matthew Tudge. „Late-Stage Functionalization of Biologically Active Heterocycles Through Photoredox Catalysis“. Angewandte Chemie International Edition 53, Nr. 19 (26.03.2014): 4802–6. http://dx.doi.org/10.1002/anie.201402023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

DiRocco, Daniel A., Kevin Dykstra, Shane Krska, Petr Vachal, Donald V. Conway und Matthew Tudge. „Late-Stage Functionalization of Biologically Active Heterocycles Through Photoredox Catalysis“. Angewandte Chemie 126, Nr. 19 (26.03.2014): 4902–6. http://dx.doi.org/10.1002/ange.201402023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Schafer, Laurel L., und Cameron H. M. Zheng. „Recent Advances in Saturated N-Heterocycle C–H Bond Functionalization for Alkylated N-Heterocycle Synthesis“. Synthesis, 01.08.2024. http://dx.doi.org/10.1055/s-0043-1775377.

Der volle Inhalt der Quelle
Annotation:
AbstractThe prominence of saturated N-heterocycle motifs in pharmaceuticals is undeniable. Challenges associated with the alkylation of saturated N-heterocycle scaffolds to efficiently access new drug analogues are hampered by synthetically laborious routes. Stereocontrolled alkyl-substitutions onto saturated N-heterocycles are particularly difficult to access in high yields by traditional synthetic methods. Alternatively, C–H bond functionalization provides a new and powerful synthetic avenue by directly and selectively functionalizing/alkylating/ arylating the abundantly available C–H bonds of saturated N-heterocycles. This review highlights complementary methods for directly activating and functionalizing C–H bonds of saturated N-heterocycles chemo-, regio-, and or stereoselectively to access alkylated products. This synthetic challenge has required catalyst development to access useful N-heterocyclic building blocks or for late-stage functionalization. Early transition metal, late transition metal, photoredox, and electrochemical methods are discussed. The selective functionalization of α, β, and γ C–H bonds to form new C–C, C–N, C–O, and C–B bonds is presented.1 Introduction2 Early Transition Metal Catalyzed α-Alkylation3 Late Transition Metal Catalyzed α-Functionalization4 Photoredox-Catalyzed α-Functionalization5 Electrochemical α-Functionalization6 C–H Functionalization of β and γ C–H Bonds7 Conclusions/Outlook
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

King-Smith, Emma, Felix A. Faber, Usa Reilly, Anton V. Sinitskiy, Qingyi Yang, Bo Liu, Dennis Hyek und Alpha A. Lee. „Predictive Minisci late stage functionalization with transfer learning“. Nature Communications 15, Nr. 1 (15.01.2024). http://dx.doi.org/10.1038/s41467-023-42145-1.

Der volle Inhalt der Quelle
Annotation:
AbstractStructural diversification of lead molecules is a key component of drug discovery to explore chemical space. Late-stage functionalizations (LSFs) are versatile methodologies capable of installing functional handles on richly decorated intermediates to deliver numerous diverse products in a single reaction. Predicting the regioselectivity of LSF is still an open challenge in the field. Numerous efforts from chemoinformatics and machine learning (ML) groups have made strides in this area. However, it is arduous to isolate and characterize the multitude of LSF products generated, limiting available data and hindering pure ML approaches. We report the development of an approach that combines a message passing neural network and 13C NMR-based transfer learning to predict the atom-wise probabilities of functionalization for Minisci and P450-based functionalizations. We validated our model both retrospectively and with a series of prospective experiments, showing that it accurately predicts the outcomes of Minisci-type and P450 transformations and outperforms the well-established Fukui-based reactivity indices and other machine learning reactivity-based algorithms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Wang, Yulei, Suman Dana, Hao Long, Yang Xu, Yanjun Li, Nikolaos Kaplaneris und Lutz Ackermann. „Electrochemical Late-Stage Functionalization“. Chemical Reviews, 26.09.2023. http://dx.doi.org/10.1021/acs.chemrev.3c00158.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Xu, Jiayi, Yahui Zhang, Qiling Cai, Li Chen, Yang Sun, Qinying Liu, Yu Gao und Haijun Chen. „Green Late‐Stage Functionalization of Tryptamines“. Chemistry – A European Journal, 13.06.2024. http://dx.doi.org/10.1002/chem.202401436.

Der volle Inhalt der Quelle
Annotation:
An efficient and rapid protocol for the oxidative halogenation of tryptamines with 10% aqueous NaClO has been developed. This reaction is featured by its operational simplicity, metal‐free conditions, no purification, and high yield. Notably, the resulting key intermediates are suitable for further functionalization with various nucleophiles, including amines, N‐aromatic heterocycles, indoles and phenols. The overall transformation exhibits broad functional‐group tolerance and is applicable to the late‐stage functionalization of complex biorelevant molecules.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Yang, Zixian, Jin-Tao Yu und Changduo Pan. „Recent advances in C–H functionalization of 2H-indazoles“. Organic & Biomolecular Chemistry, 2022. http://dx.doi.org/10.1039/d2ob01463g.

Der volle Inhalt der Quelle
Annotation:
Advances in the late-stage functionalization of 2H-indazoles, including C3-functionalization, ortho C2′–H functionalization and remote C–H functionalization at the benzene ring of 2H-indazoles, are reviewed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

„Baran Diversinates for late stage functionalization“. Chemical & Engineering News Archive 92, Nr. 46 (17.11.2014): 37. http://dx.doi.org/10.1021/cen-09246-ad23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie