Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „LASSO algoritmus“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "LASSO algoritmus" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "LASSO algoritmus"
Gaines, Brian R., Juhyun Kim und Hua Zhou. „Algorithms for Fitting the Constrained Lasso“. Journal of Computational and Graphical Statistics 27, Nr. 4 (07.08.2018): 861–71. http://dx.doi.org/10.1080/10618600.2018.1473777.
Der volle Inhalt der QuelleBonnefoy, Antoine, Valentin Emiya, Liva Ralaivola und Remi Gribonval. „Dynamic Screening: Accelerating First-Order Algorithms for the Lasso and Group-Lasso“. IEEE Transactions on Signal Processing 63, Nr. 19 (Oktober 2015): 5121–32. http://dx.doi.org/10.1109/tsp.2015.2447503.
Der volle Inhalt der QuelleZhou, Helper, und Victor Gumbo. „Supervised Machine Learning for Predicting SMME Sales: An Evaluation of Three Algorithms“. African Journal of Information and Communication, Nr. 27 (31.05.2021): 1–21. http://dx.doi.org/10.23962/10539/31371.
Der volle Inhalt der QuelleWu, Tong Tong, und Kenneth Lange. „Coordinate descent algorithms for lasso penalized regression“. Annals of Applied Statistics 2, Nr. 1 (März 2008): 224–44. http://dx.doi.org/10.1214/07-aoas147.
Der volle Inhalt der QuelleTsiligkaridis, Theodoros, Alfred O. Hero III und Shuheng Zhou. „On Convergence of Kronecker Graphical Lasso Algorithms“. IEEE Transactions on Signal Processing 61, Nr. 7 (April 2013): 1743–55. http://dx.doi.org/10.1109/tsp.2013.2240157.
Der volle Inhalt der QuelleMuchisha, Nadya Dwi, Novian Tamara, Andriansyah Andriansyah und Agus M. Soleh. „Nowcasting Indonesia’s GDP Growth Using Machine Learning Algorithms“. Indonesian Journal of Statistics and Its Applications 5, Nr. 2 (30.06.2021): 355–68. http://dx.doi.org/10.29244/ijsa.v5i2p355-368.
Der volle Inhalt der QuelleJain, Rahi, und Wei Xu. „HDSI: High dimensional selection with interactions algorithm on feature selection and testing“. PLOS ONE 16, Nr. 2 (16.02.2021): e0246159. http://dx.doi.org/10.1371/journal.pone.0246159.
Der volle Inhalt der QuelleQin, Zhiwei, Katya Scheinberg und Donald Goldfarb. „Efficient block-coordinate descent algorithms for the Group Lasso“. Mathematical Programming Computation 5, Nr. 2 (31.03.2013): 143–69. http://dx.doi.org/10.1007/s12532-013-0051-x.
Der volle Inhalt der QuelleJohnson, Karl M., und Thomas P. Monath. „Imported Lassa Fever — Reexamining the Algorithms“. New England Journal of Medicine 323, Nr. 16 (18.10.1990): 1139–41. http://dx.doi.org/10.1056/nejm199010183231611.
Der volle Inhalt der QuelleZhao, Yingdong, und Richard Simon. „Development and Validation of Predictive Indices for a Continuous Outcome Using Gene Expression Profiles“. Cancer Informatics 9 (Januar 2010): CIN.S3805. http://dx.doi.org/10.4137/cin.s3805.
Der volle Inhalt der QuelleDissertationen zum Thema "LASSO algoritmus"
Loth, Manuel. „Algorithmes d'Ensemble Actif pour le LASSO“. Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2011. http://tel.archives-ouvertes.fr/tel-00845441.
Der volle Inhalt der QuelleSINGH, KEVIN. „Comparing Variable Selection Algorithms On Logistic Regression – A Simulation“. Thesis, Uppsala universitet, Statistiska institutionen, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446090.
Der volle Inhalt der QuelleSanchez, Merchante Luis Francisco. „Learning algorithms for sparse classification“. Phd thesis, Université de Technologie de Compiègne, 2013. http://tel.archives-ouvertes.fr/tel-00868847.
Der volle Inhalt der QuelleHuynh, Bao Tuyen. „Estimation and feature selection in high-dimensional mixtures-of-experts models“. Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC237.
Der volle Inhalt der QuelleThis thesis deals with the problem of modeling and estimation of high-dimensional MoE models, towards effective density estimation, prediction and clustering of such heterogeneous and high-dimensional data. We propose new strategies based on regularized maximum-likelihood estimation (MLE) of MoE models to overcome the limitations of standard methods, including MLE estimation with Expectation-Maximization (EM) algorithms, and to simultaneously perform feature selection so that sparse models are encouraged in such a high-dimensional setting. We first introduce a mixture-of-experts’ parameter estimation and variable selection methodology, based on l1 (lasso) regularizations and the EM framework, for regression and clustering suited to high-dimensional contexts. Then, we extend the method to regularized mixture of experts models for discrete data, including classification. We develop efficient algorithms to maximize the proposed l1 -penalized observed-data log-likelihood function. Our proposed strategies enjoy the efficient monotone maximization of the optimized criterion, and unlike previous approaches, they do not rely on approximations on the penalty functions, avoid matrix inversion, and exploit the efficiency of the coordinate ascent algorithm, particularly within the proximal Newton-based approach
Wang, Bo. „Variable Ranking by Solution-path Algorithms“. Thesis, 2012. http://hdl.handle.net/10012/6496.
Der volle Inhalt der QuelleNoro, Catarina Vieira. „Determinants of households´ consumption in Portugal - a machine learning approach“. Master's thesis, 2021. http://hdl.handle.net/10362/121884.
Der volle Inhalt der QuelleHe, Zangdong. „Variable selection and structural discovery in joint models of longitudinal and survival data“. Thesis, 2014. http://hdl.handle.net/1805/6365.
Der volle Inhalt der QuelleJoint models of longitudinal and survival outcomes have been used with increasing frequency in clinical investigations. Correct specification of fixed and random effects, as well as their functional forms is essential for practical data analysis. However, no existing methods have been developed to meet this need in a joint model setting. In this dissertation, I describe a penalized likelihood-based method with adaptive least absolute shrinkage and selection operator (ALASSO) penalty functions for model selection. By reparameterizing variance components through a Cholesky decomposition, I introduce a penalty function of group shrinkage; the penalized likelihood is approximated by Gaussian quadrature and optimized by an EM algorithm. The functional forms of the independent effects are determined through a procedure for structural discovery. Specifically, I first construct the model by penalized cubic B-spline and then decompose the B-spline to linear and nonlinear elements by spectral decomposition. The decomposition represents the model in a mixed-effects model format, and I then use the mixed-effects variable selection method to perform structural discovery. Simulation studies show excellent performance. A clinical application is described to illustrate the use of the proposed methods, and the analytical results demonstrate the usefulness of the methods.
Buchteile zum Thema "LASSO algoritmus"
Loth, Manuel, und Philippe Preux. „The Iso-regularization Descent Algorithm for the LASSO“. In Neural Information Processing. Theory and Algorithms, 454–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17537-4_56.
Der volle Inhalt der QuelleMd Shahri, Nur Huda Nabihan, und Susana Conde. „Modelling Multi-dimensional Contingency Tables: LASSO and Stepwise Algorithms“. In Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017), 563–70. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7279-7_70.
Der volle Inhalt der QuelleWalrand, Jean. „Speech Recognition: B“. In Probability in Electrical Engineering and Computer Science, 217–42. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-49995-2_12.
Der volle Inhalt der QuellePawlak, Mirosław, und Jiaqing Lv. „Analysis of Large Scale Power Systems via LASSO Learning Algorithms“. In Artificial Intelligence and Soft Computing, 652–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20912-4_59.
Der volle Inhalt der QuelleAlKindy, Bassam, Christophe Guyeux, Jean-François Couchot, Michel Salomon, Christian Parisod und Jacques M. Bahi. „Hybrid Genetic Algorithm and Lasso Test Approach for Inferring Well Supported Phylogenetic Trees Based on Subsets of Chloroplastic Core Genes“. In Algorithms for Computational Biology, 83–96. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21233-3_7.
Der volle Inhalt der QuelleBoulesteix, Anne-Laure, Adrian Richter und Christoph Bernau. „Complexity Selection with Cross-validation for Lasso and Sparse Partial Least Squares Using High-Dimensional Data“. In Algorithms from and for Nature and Life, 261–68. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00035-0_26.
Der volle Inhalt der QuelleYamada, Isao, und Masao Yamagishi. „Hierarchical Convex Optimization by the Hybrid Steepest Descent Method with Proximal Splitting Operators—Enhancements of SVM and Lasso“. In Splitting Algorithms, Modern Operator Theory, and Applications, 413–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25939-6_16.
Der volle Inhalt der QuelleHao, Yuhan, Gary M. Weiss und Stuart M. Brown. „Identification of Candidate Genes Responsible for Age-Related Macular Degeneration Using Microarray Data“. In Biotechnology, 969–1001. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8903-7.ch038.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "LASSO algoritmus"
Jin, Yuzhe, und Bhaskar D. Rao. „MultiPass lasso algorithms for sparse signal recovery“. In 2011 IEEE International Symposium on Information Theory - ISIT. IEEE, 2011. http://dx.doi.org/10.1109/isit.2011.6033773.
Der volle Inhalt der QuelleQian, Wang. „A Comparison of Three Numeric Algorithms for Lasso Solution“. In 2020 International Conference on Computing and Data Science (CDS). IEEE, 2020. http://dx.doi.org/10.1109/cds49703.2020.00019.
Der volle Inhalt der QuelleKong, Deguang, und Chris Ding. „Efficient Algorithms for Selecting Features with Arbitrary Group Constraints via Group Lasso“. In 2013 IEEE International Conference on Data Mining (ICDM). IEEE, 2013. http://dx.doi.org/10.1109/icdm.2013.168.
Der volle Inhalt der QuelleMarins, Matheus, Rafael Chaves, Vinicius Pinho, Rebeca Cunha und Marcello Campos. „Tackling Fingerprinting Indoor Localization Using the LASSO and the Conjugate Gradient Algorithms“. In XXXIV Simpósio Brasileiro de Telecomunicações. Sociedade Brasileira de Telecomunicações, 2016. http://dx.doi.org/10.14209/sbrt.2016.47.
Der volle Inhalt der QuelleGu, Bin, Xingwang Ju, Xiang Li und Guansheng Zheng. „Faster Training Algorithms for Structured Sparsity-Inducing Norm“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/299.
Der volle Inhalt der QuelleMaya, Haroldo C., und Guilherme A. Barreto. „A GA-Based Approach for Building Regularized Sparse Polynomial Models for Wind Turbine Power Curves“. In XV Encontro Nacional de Inteligência Artificial e Computacional. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/eniac.2018.4455.
Der volle Inhalt der QuelleKato, Masaya, Miho Ohsaki und Kei Ohnishi. „Genetic Algorithms Using Neural Network Regression and Group Lasso for Dynamic Selection of Crossover Operators“. In 2020 Joint 11th International Conference on Soft Computing and Intelligent Systems and 21st International Symposium on Advanced Intelligent Systems (SCIS-ISIS). IEEE, 2020. http://dx.doi.org/10.1109/scisisis50064.2020.9322697.
Der volle Inhalt der QuelleIdogun, Akpevwe Kelvin, Ruth Oyanu Ujah und Lesley Anne James. „Surrogate-Based Analysis of Chemical Enhanced Oil Recovery – A Comparative Analysis of Machine Learning Model Performance“. In SPE Nigeria Annual International Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/208452-ms.
Der volle Inhalt der QuelleAhmadov, Jamal. „Utilizing Data-Driven Models to Predict Brittleness in Tuscaloosa Marine Shale: A Machine Learning Approach“. In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/208628-stu.
Der volle Inhalt der QuelleOrta Aleman, Dante, und Roland Horne. „Well Interference Detection from Long-Term Pressure Data Using Machine Learning and Multiresolution Analysis“. In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206354-ms.
Der volle Inhalt der Quelle